Event-Driven Programming Techniques Event-Driven Programming Techniques

Event-Driven Programming Technigues

This chapter addresses the more experienced GUI programmer and describes essential programming techniques.
There are two ways to program in the dialog editor:

e Use the dialog editor's menu bar and toolbar to create new dialogs or dialog elements and use the attributes
window to assign attribute values to them. The dialog editor will internally generate the corresponding Natural
code.

® Open an event-handler section or an inline-subroutine section and specify Natural code explicitly. This code
will be added to the code that is generated internally. You can also enter parameter data areas, global data areas
and local data areas in the corresponding definition sections.

You can view the current dialog’s generated and specified code by choosing "Object > List" in the dialog editor’s
menu bar.

If you want a hands-on demonstration of how to program with the dialog editor, refer to the SYSEXEVT library.
This library contains sample dialogs demonstrating basic functionality. Before accessing the sample dialogs, read the
README file. Then execute the MENU dialog.

Notes:
Code written in the dialog editor must be in structured mode.

If you want to execute a Natural application using dialogs, you must use a dialog to start this application.
The following topics are covered below:

How To Open and Close Dialogs

How To Edit a Dialog’s Enhanced Source Code

How Dialogs, Controls and Items Are Related Hierarchically
How To Define Dialog Elements

How To Manipulate Dialog Elements

How To Create and Delete Dialog Elements Dynamically
How To Enable and Disable Dialog Elements

Defining and Using Context Menus

System Variables

Generated Variables

Message Files and Variables as Sources of Attribute Values
Triggering User-Defined Events

Suppressing Events

Menu Structures, Toolbars and the MDI

Executing Standardized Procedures

Linking Dialog Elements to Natural Variables

Validating Input in a Dialog Element

Storing and Retrieving Client Data for a Dialog Element
Creating Dialog Elements on a Canvas Control

Working with ActiveX Controls

Working with Arrays of Dialog Elements

Working with Control Boxes

Working with Error Events

Working with a Group of Radio-Button Controls

Working with List-Box Controls and Selection-Box Controls
Working with Nested Controls

Working with a Dynamic Information Line

Working with a Status Bar

Copyright Software AG 2002 1

How To Open and Close Dialogs Event-Driven Programming Technigues

Working with Status Bar Controls

Working with Dynamic Information Line and Status Bar
Adding a Maximize/Minimize/System Button

Defining Color

Adding Text in a Certain Font

Adding Online Help

Defining Mnemonic and Accelerator Keys

Dynamic Data Exchange - DDE

Object Linking and Embedding - OLE

For further information on Event-driven Programming Isgeduction to Event-Driven Programming

How To Open and Close Dialogs

Opening a Dialog

An event-driven application is started by executing the base dialog. Events triggered by the end user will then
typically cause other dialogs to be started. The application ends when the base dialog is closed.

» To open a dialog from anywhere within an event-driven application
Use the statement OPEN DIALOG.
This statement causes the dialog to be loaded and the processing on its opening to be performed.

Control over processing returns from the opened dialog except for dialogs with the style "Dialog Box". For those
dialog styles, control returns only after the dialog has ended.

The parameters passed are accessible only during the processing on the opening of a dialog (before-open and
after-open events), except for when the parameters are declared as BY VALUE in the parameter data area of the
opened dialog or when the dialog has the style "Dialog Box".

To open a dialog from anywhere within an event-driven Natural application, the following syntax is used:

OPEH DIALOG ope/aad? [USING] [PARENT] cpeas?
EEMHE] [Dés L OiG=1D7] ﬂ,.:'e.'z.-w'ﬁ']

[oormadd
[ViTH { FARAMETERY - lzws £]]

-

Operands

Operandlis the name of the dialog to be opened. ITRBERAMETERS-clause usedpperand1must be a constant
(the name of a cataloged dialog).

Operand2s the handle name of the parent.
Operand3is a unique dialog ID returned from the creation of the dialog. It must be defined with format/length 14.
Passing Parameters to the Dialog

When a dialog is opened, parameters may be passed to this dialog.

2 Copyright Software AG 2002

Event-Driven Programming Techniques

As operand4you specify the parameters that are passed to the dialog.

With the PARAMETERS-clausparameters may be passed selectively:

PARAMETER S ipa.vz.we!e.-'-.-:la.we =opeasdd | EHD=-PARAMETERS

Opening a Dialog

Note: You may only use the PARAMETERS-clause if operandl is an alphanumeric constant and if the dialog is

cataloged.

Parameter-namés the name of the parameter as defined in the parameter data area section of the dialog.

To avoid format/length conflicts between operands and parameters passed, see the BY VALUE option of the

DEFINE DATA statement in thBlatural Statements Manual

When passing parameters only wagherand4 a dialog may be opened as follows:

Example:
/* The following parameters are defined in the calling dialog’s parameter
/* data area (not in the parameter data area of the dialog to be opened):

1 #MYDIALOG-ID (14)
1 #MYPARM1 (A10)
/* Pass the operands #MYPARM1 and 'MYPARM2’ to the parameters #DLG-PARM1 and
/* #DLG-PARM?2 defined in the dialog to be opened:
OPEN DIALOG 'MYDIALOG’
USING #DLG$WINDOW
GIVING #MYDIALOG-ID
WITH #MYPARM1 'MYPARM?2'’

Copyright Software AG 2002

Opening a Dialog Event-Driven Programming Techniques

When passing parameters selectively withRA&RAMETERS-clausa dialog may be opened as shown in the
following example:

Example:
[* The following parameters are defined in the calling dialog’s parameter
[* data area (not in the parameter data area of the dialog to be opened):

1 #MYDIALOG-ID (14)
1 #MYPARML1 (A10)
[* Pass the operands #MYPARM1 and 'MYPARM?2' to the parameters #DLG-PARM1 and
/* #DLG-PARMZ2 defined in the dialog to be opened:
OPEN DIALOG '"MYDIALOG’
USING #DLG$WINDOW
GIVING #MYDIALOG-ID
WITH PARAMETERS
#DLG-PARM1=#MYPARM1
#DLG-PARM2="MYPARM2’
END-PARAMETERS

Permanence In Creating, Passing And Checking Data

The term "permanence” is used in Natural to denote data defined in a base dialog’s local data area whose existence is
guaranteed throughout the whole lifetime of the dialog. Data defined in the global data area are not kept permanent
because the global data area can be exchanged while the application is executed.

The reference to the permanent data is kept by saving the parameter data area internally during opening of the dialog.
This reference is reused when

® a dialog element receives an event;
® all parameters passed from one dialog to another are permanent, provided they reference the base dialog’s local
data area.

Parameters are accessible

e during the before-open and after-open event processing on opening of a dialog or
e if all of themreference the base dialog’s local data area.

The following example illustrates a case in which two parameters are kept permanently and one other is not. Assume
the base dialog is dialog A. This base dialog now opens dialog B, passing parameters #X and #Y. After that, dialog B
passes parameters #X and #Y on to dialog C. The #X and #Y parameters which are now in dialog C will be
permanent, even if dialog B is closed. If, however, dialog B passes its own parameter #Z when opening dialog C, the
parameter #Z is not permanent, because if dialog B is closed, the reference to its local data area is no longer valid.
No parameter in dialog C is accessible (#Z does not reference the base dialog’s local data area).

Dialoeg 2 base] |_ T Dalkg® C T T] Dalog ©
DEFIME DATA 1 DEFIME DATA ' DEFIME DT &,
LOCAL FERAMETER I PERAMETER
18 141 =% 1 04 A 4]
187 (2] = o1 8 2] | 18 2]
[. 142 [44]
! .
| DEFINE DaT X
LOCAL
UOTHE (R | i
'—
eE B - T
Lo il

4 Copyright Software AG 2002

Event-Driven Programming Techniques Processing Steps When Opening a Dialog

Processing Steps When Opening a Dialog

This section describes what happens when a dialog is opening. You can open a dialog either by executing it, for
example from the command line, or by invoking it with an OPEN DIALOG statement.

The dialog object is loaded and starts executing.

The BEFORE-ANY event-handler section is executed, the value of the system variable *EVENT being OPEN.
The BEFORE-OPEN event-handler section is executed.

The dialog window is created as specified in the dialog editor.

The BEFORE-ANY event-handler section is executed. *EVENT = AFTER-OPEN.

All dialog elements are created as specified in the dialog editor.

The dialog window and all dialogs are made visible except those that are VISIBLE = FALSE.

The AFTER-OPEN event-handler section is executed.

The AFTER-ANY event-handler section is executed. *EVENT = AFTER-OPEN.

The AFTER-ANY event-handler section is executed. *EVENT = OPEN (not if the dialog’s STYLE attribute
value is "Dialog Box").

Closing Dialogs

To close a dialog dynamically, you specify the following:

- rapeaz.-:-a'?‘ 1[
CLOSE DIALOG [USING] [ALOG-10] -[0610

-

Operandlis the identifier of the dialog as returned in the OPEN DIALOG statement.

Example:

CLOSE DIALOG *DIALOG-ID /* Close the current Dialog

The dialog will then be erased from the screen and removed from memory. All local data associated with the dialog
will be gone.

Note: If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not close its parent(s) because
this will result in a deadlock.

operandl

Operand1lis the name of the dialog to be closed.

To close the current dialog, you specify *DIALOG-ID.

Copyright Software AG 2002 5

Initializing Attribute Values Event-Driven Programming Technigues

Initializing Attribute Values

You can specify conditions for the opening and closing of a dialog: this applies to the before-open, after-open, and
close events. These conditions can be used to initialize the attribute values in the dialog.

The following is an example of after-open event-handler code: Red foreground color is assigned to push buttons that
the user must press after entering data in the associated input fields.

Example:

DEFINE DATA LOCAL

1 #0OK-BUTTON HANDLE OF PUSHBUTTON

1 #CALC-BUTTON HANDLE OF PUSHBUTTON

1 #SAVE-BUTTON HANDLE OF PUSHBUTTON

1 #CONVERT-BUTTON HANDLE OF PUSHBUTTON

END-DEFINE

#0OK-BUTTON.FOREGROUND-COLOUR-NAME := RED

#CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
#SAVE-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CONVERT-BUTTON.FOREGROUND-COLOUR-NAME := RED

If you want to modify attribute values of dialog elements and of the dialog before the dialog is opened (and displayed
to the end user), do not specify this in the "before open" event-handler code, because the dialog elements and the
dialog window are not yet created. Instead, create the dialog with the dialog editor and set the attribute VISIBLE to
FALSE in the "Dialog Attributes" window. Then modify all the attribute values in the after-open event-handler code
(when the handles are available). Then make the dialog visible with VISIBLE = TRUE.

Example:

DEFINE DATA LOCAL

1 #DIA-1 HANDLE OF DIALOG

1 #OK-BUTTON HANDLE OF PUSHBUTTON

1 #CALC-BUTTON HANDLE OF PUSHBUTTON
END-DEFINE
/* AFTER OPEN event-handler code section
#OK-BUTTON.FOREGROUND-COLOUR-NAME := RED

#CALC-BUTTON.FOREGROUND-COLOUR-NAME := REp
#DIA-1.VISIBLE := TRUE

6 Copyright Software AG 2002

Event-Driven Programming Techniques How To Edit a Dialog’s Enhanced Source Code

How To Edit a Dialog’s Enhanced Source Code

What Is The Enhanced Source Code Format ?

The enhanced source code format enables you to edit source code that has been generated by the dialog editor. You
edit enhanced source code in a program editor window. When you edit a dialog, the dialog editor stores the results in
internal structures. From these structures, source code is generated when you save, stow, list or execute any other
system command on the dialog. Code is also generated when you refresh the program editor’s source code window.

You can edit enhanced source code as you do any other Natural user code. The source code syntax is subject to a
number of formal conventions, however. For a documentation of the enhanced source code syiitax, see
Enhanced Source Code Fornrathe Dialog Components Manual.

When you execute a system command on a dialog you have just edited in the program editor source code window,
the dialog editor updates its internal structures and refreshes the source code window.

Note: The dialog editor preserves code layout only in the user code sections, such as event handlers.
The dialog editor supports the following source formats:

e 213. This is the format generated by Natural Version 2.1.3 (New Dimension). It is supported for input only.
You cannot generate 2.1.3 format with Natural Version 3.1 and Version 3.2.

® 22C. This is the format generated by Natural Version 2.2.2. In Natural for Windows and Unix/OpenVMS
Version 4.1, dialogs can no longer be generated in this format. It, too, is supported for input only.

® 22D. This is the "enhanced" source-code format that from now on is the standard. It is generated for compiling,
storing, and editing dialogs in Natural Version 2.2.3 and above.

The characteristics of the enhanced source code format are:

Dialog sources are readable and printable without requiring conversion.

Dialog sources consist only of legal and fully documented Natural syntax.

Dialog sources can be edited textually using program editor functions such as scanning for and replacing text.
Dialog sources can be displayed in the Natural Debugger.

Dialog sources are larger than 213 or 22C format sources (by a factor between 1.25 and 3.5).

Any code that can be generated with the dialog editor can also be coded manually. For example, if you "draw" a
push-button control onto the user interface, the corresponding code is generated implicitly. You can also create
this push-button control explicitly with the help of a source-code window that provides you with the functions

of the program editor.

® You can switch between the dialog editor and the program editor by selecting the source code window or the
dialog window. If you edit in either window, you need to synchronize your updates: (graphically) modifying the
dialog locks the source code window and you may not make changes there. Correspondingly, if you change the
source code, you may not make changes in the dialog window, which is locked. If your editor is locked, its
status bar displays "Locked".

Copyright Software AG 2002 7

Avoiding Incompatibilities Between Dialog Editor And Program Editor Event-Driven Programming Techniques

For dialogs in the old formats, this means:

e They remain unchanged until they are processed in the dialog editor. They can be compiled and executed in
their old format.

e When you load them into the dialog editor, the dialogs are saved in the new format. If they are saved in the
enhanced format, you must include the local data area NGULKEY1. Note that the storage size increases when
the dialogs are saved.

® When you list or print them and you enable the "enhanced list mode" option, the dialogs are displayed using the
enhanced source code format.

Avoiding Incompatibilities Between Dialog Editor And Program Editor

When you edit the enhanced source code format, note that some of the syntax elements accepted by the program
editor are not accepted by the dialog editor. Enhanced source code editing is not intended as a new programming
technique in addition to using the dialog editor:

® |t may be syntactically acceptable to replace a dialog element’s numeric coordinate (a RECTANGLE-X
attribute value) with a variable reference. The dialog editor, however, will not accept this when the changes are
synchronized, and will prompt you when you issue a command requiring the source code.

® The dialog editor may accept a reference to a variable’s STRING attribute even if the variable is not declared,
but the compiler will not accept this.

In the sections that are not user code, you should avoid such incompatibilities by adding only code that is acceptable
to both the compiler and the dialog editor.

In the user code sections, such as in event-handler sections and in external or internal subroutines, your choice of
programming techniques is not restricted by the dialog editor. In these sections, however, you have no visual editing
support.

As a general rule, a mixed approach is often the best, especially when you use dialog-editor- generated code as a
starting point.

Note: In the dialog editor, you can copy dialog elements to the clipboard and when you paste them into user code,
they appear as text.

8 Copyright Software AG 2002

Event-Driven Programming Techniques How To Use The Enhanced Source Code Format

How To Use The Enhanced Source Code Format

» To edit a dialog in the enhanced source code format

1. Load the dialog into the dialog editor.

2. From the "Dialog" menu, choose "Source Code".
Or choose the "Source Code" toolbar button.
Or press CTRL+ALT+C.

The dialog’s source code window appears and the program editor is loaded. This editor enables you to scan for text
strings, replace them, and so on. For more information on how to use the program editoe, Besgram Editor

The enhanced source code format’s syntactical conventions are documented in th& bbdptéianced Source
Code Formain the Dialog Components Manual.

Enhanced source code can be listed and printed as usual. You can also scan for strings by using the Find option of
the Edit menu.

Note: If you are replacing strings with this option, this can make a dialog source incompatible with the dialog editor.

Copyright Software AG 2002 9

How Dialogs, Controls and ltems Are Related Hierarchically Event-Driven Programming Technigues

How Dialogs, Controls and Items Are Related Hierarchically

Dialogs and their dialog elements are organized hierarchically. Typically, the dialog window contains a number of
controls. The controls are children of the window or of other controls which are capable of acting as containers. A
control may contain a number of items. For example, a list-box control may contain several list-box items. The
control is the parent of the items.

The dialogs themselves are also organized hierarchically. Every time the OPEN DIALOG statement is specified, the
parent of the newly created dialog must be provided as a parameter. This parameter may be NULL-HANDLE or the
handle of an existing dialog. If NULL-HANDLE is provided, the dialog belongs to the desktop rather than to any
other dialog. This means that the dialog can be closed and minimized independently of any other dialog in the
application. A dialog having an existing dialog as parent is closed or minimized when the parent dialog is closed or
minimized.

The first dialog in an application plays a special role and is sometimes called the base dialog. When the base dialog
is closed, all other dialogs in the application are also closed, whether they are children of the base dialog or not.

All children on one hierarchical level are sorted in the sequence of their creation. Each dialog element therefore
always "knows" its parent, its predecessor and successor (on the same hierarchical level), and its first and last child
(if present). You can retrieve this information by using the following attributes:

PARENT
PREDECESSOR
SUCCESSOR
FIRST-CHILD
LAST-CHILD

These attributes contain handle values of dialog elements. If their value is NULL, the dialog element has no parent,
successor, or child. The following example demonstrates how to go through all dialog elements of a dialog.

Example 1:

1 #CONTROL HANDLE OF GUI

#CONTROL := #DLG$SWINDOW.FIRST-CHILD
REPEAT UNTIL #CONTROL = NULL-HANDLE

#CONTROL := #CONTROL.SUCCESSOR
END-REPEAT

List-box controls and list-box items contain an additional attribute:

SELECTED-SUCCESSOR can be set for either the list-box control itself or for any of its items. It points to the next
selected item in a list-box control. For the list-box control itself, it points to the first selected item.

10 Copyright Software AG 2002

Event-Driven Programming Techniques How Dialogs, Controls and Items Are Related Hierarchically

Example 2:

1 #ITEM HANDLE OF LISTBOXITEM

#ITEM := #LISTBOX.SELECTED-SUCCESSOR
REPEAT UNTIL #ITEM = NULL-HANDLE

#ITEM := #ITEM.SELECTED-SUCCESSOR
END-REPEAT

The above example is the query necessary to find all selected items in a list-box control where multiple selection is
allowed (MULTI-SELECTION attribute).

Copyright Software AG 2002 11

How To Define Dialog Elements Event-Driven Programming Technigues

How To Define Dialog Elements

Dialog elements are uniquely identified by a handle. A handle is a binary value that is returned when a dialog
element is created. A handle must be defined in a DEFINE DATA statement of the dialog.

You can define a handle

® Dy creating a dialog or a dialog element with the dialog editor; in this case, the handle definition is generated;
® Dby explicitly entering the definition in a global, local, or parameter data area of the dialog;
® by explicitly entering the definition in a subprogram or a subroutine.

Note: Handles of ActiveX controls are defined in a slightly different way than the standard handle definition
described below. This is describediforking with ActiveX Controls

A handle is defined inside a DEFINE DATA statement in the following way:

feved dzadie-pzme [(zazp-cefinios] HAHDLE OF oizig-ekemeat-doe

Handles may be defined on deyel
Handle-namaés the name to be assigned to the handle; the naming conventions for user-defined variables apply.

Dialog-element-typés the type of dialog element. Its possible values are the values of the TYPE attribute. It may not
be redefined and not be contained in a redefinition of a group.

Examples:

1 #SAVEAS-MENUITEM HANDLE OF MENUITEM
1 #OK-BUTTON (1:10) HANDLE OF PUSHBUTTON

When you have defined a handle, you can usbdhele-namevith handle attribute operands in those Natural
statements where an operand may be specified. With handle attribute operands, you can, for example, dynamically
query, set, or modify attribute values for the defidedog-element-typeThis is the most important programming
technique in the dialog editor. For details, see the selditonTo Manipulate Dialog Elements

If there is a dialog element handle of the same name in two different dialogs, the PARENT attribute ensures that
Natural knows the difference between the two handles (two different PARENT values). Handles may be passed as
parameters or may be assigned from one handle variable to another.

HANDLE OF GUI

In addition to the handle types referring to one dialog element, the generic handle type HANDLE OF GUI is
available. In event-handler code, you can use HANDLE OF GUI to refer to the handle of any type of dialog element.

This can be useful, for example, if you are querying an attribute value in all dialog elements on one level: you go
through the dialog elements one after the other; in the course of this query, it is not clear which type of dialog

element is going to be queried next. Then a GUI handle makes it possible to query the next dialog element regardless
of its type. This saves a lot of coding, because otherwise, you would have to query the attribute’s value of each

dialog element separately.

Example:

12 Copyright Software AG 2002

Event-Driven Programming Techniques NULL-HANDLE

1 #CONTROL HANDLE OF GUI

#CONTROL := #DLG$SWINDOW.FIRST-CHILD
REPEAT UNTIL #CONTROL = NULL-HANDLE

#CONTROL := #CONTROL.SUCCESSOR
END-REPEAT

NULL-HANDLE

The HANDLE constant "NULL-HANDLE" may be used to query, set or modify a NULL value of a HANDLE. Such
a NULL value means that the dialog element is nonexistent (even if it has been created explicitly).

Example:

DEFINE DATA PARAMETER
1 #PUSH HANDLE OF PUSHBUTTON
END-DEFINE

IF #PUSH = NULL-HANDLE

The HANDLE constant "NULL-HANDLE" represents the NULL value of a HANDLE variable or of an attribute
with format HANDLE. For handle variables, the value indicates that the expréssidte.attributerefers to the
global attribute list. For attributes, this value indicates that no value is currently set.

Copyright Software AG 2002 13

How To Manipulate Dialog Elements Event-Driven Programming Technigues

How To Manipulate Dialog Elements

To manipulate dialog elements, Natural provides you with handle attribute operands. You use handle attribute
operands wherever an operand may be specified in a Natural statement. This is the most important programming
technique in event-handler code.

Important: You must havdefined a handle

Note: ActiveX controls are manipulated in a slightly different way than the standard way described below. This is
described inWorking with ActiveX Controls

Handle attribute operands may be specified as follows:

handle.name - attribute.name [(index-specification)]

Thehandle-nameés the handle of thdialog-element-typas defined in the HANDLE definition of the DEFINE
DATA statement.

Theattribute-namds the name of an attribute which has to be valid fodihleg-element-typef the handle.

14 Copyright Software AG 2002

Event-Driven Programming Techniques Querying, Setting and Modifying Attribute Values

Examples:

1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the
/* dialog-element-type PUSHBUTTON

RESET #PB-1.STRING... /* #PB-1.STRING is the handle attribute operand
/* where STRING is a valid attribute-name of the
[* dialog-element-type PUSHBUTTON

1 #RB-1(1:5) HANDLE OF RADIOBUTTON /* #RB-1 is an array of five RADIOBUTTONS
IF #RB-1.CHECKED(3) = CHECKED /* If the third radio-button control is
THEN... /* checked ...

Querying, Setting and Modifying Attribute Values
In most applications, it will be necessary

® to set an attribute value before creating the dialog element,
e to modify the value after creating the dialog element, and
e to query an attribute value.

In some cases, it may be necessary to modify and query some attributes during processing, for example to query the
checked/not checked state of a radio-button control or to disable (= modify) a menu item.

You can do that, for example, in the ASSIGN, MOVE or CALLNAT statements.

Examples:

1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the

/* dialog-element-type PUSHBUTTON

#PB-1.STRING:="MY BUTTON’ [* Set or modify the value of the STRING
/* attribute to 'MY BUTTON’

#TEXT:= #PB-1.STRING /* Query the value of the STRING attribute
/* and assign the value to #TEXT

CALLNAT 'SUBPGMY’ #PB-1.STRING /* Query the value of the STRING attribute
/* and pass it on to the subprogram

When you use thkandle-namevariable only on the left side of the statements, as in the first of the three examples
above, the attribute value is set or modified, that is, it is assigned the value of the sppeited

When you use thkandle-namevariable on the right side of the statements, as in the second example, the attribute
value is queried, that is, the value is assigned topleeand

Once a handle has been defined (either explicitly in specified Natural code, or implicitly with the dialog editor), it
can be used with most Natural statements. However, only a specific set of attributes can be queried, set or modified
for a particular dialog element. To find out which values an attribute can have, see theAttrdpi¢esin the

Dialog Components Manual.

Although an exact data type is specified for the values of most attributes, it is sufficient to supply move-compatible
values to a handle attribute operand. The rules are the same as those for Natural variables.

Restrictions
Handle attribute operands must not be used in the following statements:

AT BREAK, FIND, HISTOGRAM, INPUT, READ, READ WORK FILE.

Copyright Software AG 2002 15

Numeric/Alphanumeric Assignment Event-Driven Programming Technigues

User-defined variables can be used instead.

Numeric/Alphanumeric Assignment

If you assign numeric operands to alphanumeric attributes, the values of these attributes will be in a non-displayable
format. The Natural arithmetic assignment rules apply.

If you need a displayable format, you can use MOVE EDITED.

16 Copyright Software AG 2002

Event-Driven Programming Techniques Numeric/Alphanumeric Assignment

Examples:

#PB-1.STRING:=-12.34 /* Non-displayable format
MOVE EDITED #l4 (EM = -Z(9)9) TO #PB-1.STRING /* Displayable format

The following edit masks may be used for the various format/length definitions of numeric operands:

Format/Length | Edit Mask
11 -279

12 -Z(5)9

14 -Z(9)9
Nn.nPn.m -Z(n).9(m)

Copyright Software AG 2002 17

How To Create and Delete Dialog Elements Dynamically Event-Driven Programming Techniques

How To Create and Delete Dialog Elements Dynamically

Dialog elements are usually added to a dialog by means of the dialog editor. However, they can also be created and
deleted dynamically. This may be done, for example, when the layout of a dialog is strongly context-sensitive.

A dialog element is created dynamically with the ADD action of the PROCESS GUI statement. This action returns a
handle to the newly created dialog element. As soon as the dialog element is created, this handle points to a set of
attributes specified for the dialog element just created.

Note: ActiveX controls are created in a slightly different way than the standard way described below. This is
described inWorking with ActiveX Controls

For more information on the actions available, and on the parameters that can be passed, see teechépter
Standardized Procedures

Global Attribute List

By modifying any handle attribute operand of the folaridlename.attributenathéor example, #PB-1.STRING),

you change an attribute value of the specific dialog element. As long as the dialog element is not yet created and the
handle variable has its initial value (NULL-HANDLE), the handle attribute opetsantidlename.attributenarhe

refers to the global attribute list.

The global attribute list is a collection of all attributes defined for any dialog element. Natural contains one such
collection. Whenever a dialog element is created, it "inherits" its attributes from this global attribute list. It does not
inherit them when you create the dialog element with the PROCESS GUI statement action ADD using the WITH
PARAMETERS option.

Creating Dialog Elements Statically and Dynamically

To define a dialog element statically (in the dialog editor), with an individual set of attributes, you must first set the
attributes in the global attribute list to the desired values and then create the dialog element. After creation, the
values of the attributes in the global attribute list remain intact. The next created dialog element gets the same
attributes from the global attribute list as the previous one, except those that have been modified.

The status of the global attribute list as found in the "after open" event handler is influenced by the dialog elements
defined statically. Therefore, before you start creating dialog elements dynamically in the "after open" event handler,
you should reset the attributes by means of the PROCESS GUI action RESET-ATTRIBUTES to prevent your dialog
elements from inheriting unexpected values from the global attribute list. If you want to avoid this inheritance
problem, use the PROCESS GUI statement action ADD with the WITH PARAMETERS option.

Unexpected values may also result from having attribute values that mean different things if used by different types
of dialog elements. For example, the value "s" of the attribute STYLE means "scaled" for the dialog element type
bitmap control but "solid" for the dialog element type line control.

The PROCESS GUI action ADD is used to define a dialog element dynamically. This clause of the PROCESS GUI
statement enables you to specify the attribute values within the statement. The inheritance of attributes from the
global attribute list does not affect the PROCESS GUI statement action ADD. The attributes specified in the
statement are transferred to the global attribute list before the action ADD is performed.

Note: When you use the PROCESS GUI statement with Parameter Clause 2 of the ADD action, the global attribute
list is not used or affected. For parameters which are needed to create the dialog element, but which were not
specified in the WITH PARAMETERS section of the PROCESS GUI action ADD statement, the default value is
taken. Apart from these, only the parameters which are passed explicitly in the parameter list are used to create the
dialog element.

18 Copyright Software AG 2002

Event-Driven Programming Techniques How to Handle Events of Dynamically Created Dialog Elements

To create list-box and selection-box items dynamically, it may be more convenient to use the PROCESS GUI action
ADD-ITEMS. This allows you to insert several items at a time.

Example:

[* #PB-A inherits the current settings of the global attribute list

#PB-A.STRING := 'TESTY

PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-A
#PB-B.STRING := 'TEST2’

[* #PB-B has the same attributes as #PB-A except STRING. This leads to #PB-B
[* covering #PB-A.

PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-B
COMPUTE #PB-C.RECTANGLE-Y = #PB-B.RECTANGLE-Y + #PB-C.RECTANGLE-H + 20
[* #PB-B has the same attributes as #PB-A except RECTANGLE-Y

[* #PB-C will be located 20 pixels below #PB-B

PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-C

To delete dialog elements dynamically, you use the PROCESS GUI action DELETE. You can also use this
technique to delete dialog elements created with the dialog editor (at design time). You should, however, avoid using
the handle of the deleted dialog element because this is invalid.

Dialog elements often do not have to be created dynamically. In some cases, it is sufficient to make dialog elements
VISIBLE = TRUE and VISIBLE = FALSE, depending on the context. This technique is more efficient and easier to
handle. It also enables you to "insert" dialog elements anywhere in the navigation sequence.

Example:

DEFINE DATA LOCAL
1 #PB-1 HANDLE OF PUSHBUTTON
END-DEFINE

#PB-1.VISIBLE := FALSE

IF... /* Logical condition
#PB-1.VISIBLE := TRUE
END-IF

How to Handle Events of Dynamically Created Dialog Elements

When a dialog element is created dynamically, you cannot use the dialog editor to associate events to it. Instead, you
must handle all events of all dynamically created dialog elements in the DEFAULT event. In this event, you must
filter out which event occurred for which dialog element. The code for this is similar to the code generated by the
dialog editor. The general structure is:

Example:

Copyright Software AG 2002 19

How to Handle Events of Dynamically Created Dialog Elements Event-Driven Programming Techniques

DECIDE ON FIRST *CONTROL
VALUE #PB-A
DECIDE ON FIRST *EVENT
VALUE 'CLICK’
/* Click event-handler code
NONE
IGNORE
END-DECIDE
VALUE #PB-B

VALUE #PB-C

END-DECIDE

In the case of event code for dynamically created ActiveX contbisre event parameters are usiids necessary

to precede the event code with an OPTIONS 2 statement containing the name of the event, otherwise the compiler
will not be able to process parameter references (e.g., #OCX-1.<<PARAMETER->>) successfully. However, in
contrast to the implicit generation of the OPTIONS statement by the Dialog Editor for events for statically created
controls, no OPTIONS 3 statement should be coded in this case. Otherwise the Dialog Editor would falsely interpret
the OPTIONS 3 statement as the end marker for the DEFAULT event, resulting in a scanning error on attempting to
load the dialog.

Example:

DECIDE ON FIRST *CONTROL
VALUE #OCX-1 /* MS Calendar control
DECIDE ON FIRST *EVENT
VALUE ’-602’ /* DispID for KeyDown event
OPTIONS 2 KeyDown
/* KeyDown event-handler code containing parameter
/* access (e.g. #OCX-1.<>)
NONE
IGNORE
END-DECIDE

END-DECIDE

20 Copyright Software AG 2002

Event-Driven Programming Techniques How To Enable and Disable Dialog Elements

How To Enable and Disable Dialog Elements

During end-user interaction, it may be implicitly clear that certain dialog elements must not be used. For example, if
a dialog requiring personnel data contains a group of radio-button controls for marital status and an input-field
control for date of marriage, the input-field control must be disabled whenever the marital status is other than
"married".

There are two ways to do this:

® Use Natural code to enable/disable a dialog element dynamically.
® Use the dialog editor (to disable a dialog element initially).

The first method is used more often.
The Natural code might look like this:

Examples:

[*First alternative

IF #RB-1.ENABLED = TRUE /* Logical condition
#IF-1.ENABLED := TRUE /* Set ENABLED to TRUE
END-IF

/*Second alternative
#PB-1.ENABLED := #RB-1.ENABLED

When you use the dialog editor, you set the attribute ENABLED to TRUE by marking the "Enabled” entry in the
dialog element’s attributes window.

To disable editing in input-field controls, selectionbox controls and edit area controls, it is not always necessary to
disable these dialog elements entirely. It may be sufficient to make them MODIFIABLE = FALSE.

Defining and Using Context Menus

As from Natural v4.1.1, it is possible to create context menus for use within Natural applications. The context menus
can be completely static (i.e., the menu contents are known in advance and can be built via the dialog editor) or
wholly or partially dynamic (i.e., the menu contents and/or state depend on the runtime context and are not
completely known at design time).

Construction

A context menu is very similar in concept to a submenu. Therefore, the same menu editor is used for editing a
context menu as is used for editing a dialog’s menu bar. Menu items can be added to context menus, and events
associated with them, in exactly the same way as for menu-bar submenus. There are no functional differences to the
menu-bar editor, except that the 'OLE’ combo box (which is applicable only to top-level menu-bar submenus) will
always be disabled. It should be noted, however, that any accelerators defined for context menu items will be
globally available as long as that menu item exists. Furthermore, the accelerator will trigger the menu item for which
it is defined even if the context menu is not being displayed or if the focus is on a control using a different context
menu or no context menu at all.

The context-menu editor may be invoked via either a new menu item, 'Context menus...” on the 'Dialog’ menu, or
via its associated accelerator (CTRL+ALT+X by default), or toolbar icon. However, because the context-menu editor
can only edit one context menu editor at a time, the context-menu editor is not invoked directly. Instead, the Dialog
Context Menus window is shown, where operations on the context menu as a whole are made, and from which the
menu editor for a given (selected) context menu can be invoked.

Copyright Software AG 2002 21

Association Event-Driven Programming Technigues

Internally, in order to distinguish between submenus and context menus, context menus have a new type,
CONTEXTMENU. Otherwise, the generated code in both cases is identical. Here is some sample code illustrating
the statements used to build up a simple context menu containing two menu items:

/* CREATE CONTEXT MENU ITSELF:

PROCESS GUI ACTION ADD WITH PARAMETERS
HANDLE-VARIABLE = #CONTEXT-MENU-1
TYPE = CONTEXTMENU
PARENT = #DLG$WINDOW

END-PARAMETERS GIVING *ERROR

/* ADD FIRST MENU ITEM:

PROCESS GUI ACTION ADD WITH PARAMETERS
HANDLE-VARIABLE = #MITEM-1
TYPE = MENUITEM
DIL-TEXT = Invokes the first item’
PARENT = #CONTEXT-MENU-1
STRING ="ltem 1’

END-PARAMETERS GIVING *ERROR

/* ADD SECOND MENU ITEM:

PROCESS GUI ACTION ADD WITH PARAMETERS
HANDLE-VARIABLE = #MITEM-2
TYPE = MENUITEM
DIL-TEXT = 'Invokes the second item’
PARENT = #CONTEXT-MENU-1
STRING ="ltem 2’

END-PARAMETERS GIVING *ERROR

Note that if context menus or context-menu items are created dynamically in user-written code, the context menu or
menu items will not be visible to the dialog editor. For example, the dynamically created menu item will not be
visible in the context-menu list box, and the dynamically created menu items will not be visible in the context-menu
editor.

Association

After creating a context menu, the context menu needs to be associated with a Natural object. Context menus are
supported for almost all controls types capable of receiving the keyboard focus and for the dialog window itself. The
full list includes ActiveX controls, bitmaps, canvasses, edit areas and input fields, list boxes, push buttons, radio
buttons, scroll bars, selection boxes, table controls, toggle buttons, standard and MDI child windows, and MDI frame
windows.

For all object types supporting context menus, the corresponding attribute dialogs in the dialog editor include a
read-only combo box listing all context menus created by the dialog editor, together with an empty entry. The
selection of the empty entry implies that no context menu is to be used for this object, and is the default.

Internally, the association is achieved by a new attrilC@NTEXT-MENU , which should be set to the handle of a
context menu. This attribute can be assigned at or after object creation time, and defaults to NULL-HANDLE if not
specified, indicating the absence of a context menu. For context menus created by the dialog editor, the context menu
is specified at control creation time as illustrated below:

22 Copyright Software AG 2002

Event-Driven Programming Techniques Invocation

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #LB-1

TYPE = LISTBOX

RECTANGLE-X =585

RECTANGLE-Y =293

RECTANGLE-W = 142

RECTANGLE-H = 209

MULTI-SELECTION = TRUE

SORTED = FALSE

PARENT = #DLG$WINDOW

CONTEXT-MENU = #CONTEXT-MENU-1

SUPPRESS-FILL-EVENT = SUPPRESSED

END-PARAMETERS GIVING *ERROR

The same syntax can also be used for controls created in user-written event code. In other cases, where the control
was created by the dialog editor but the context menu was not, the context menu attribute must be assigned to the
control after its creation, e.g., in the dialo@ETER-OPEN event

/* CONTEXT MENU SPECIFIED AFTER CREATION:

#LB-2.CONTEXT-MENU := #CONTEXT-MENU-2

Note that a context menu is not destroyed when an object using it is destroyed. Instead, it is destroyed when its
parent object (typically, the dialog for which the context menu was defined) is destroyed. Similarly, the assignment
of a new menu handle to the CONTEXT-MENU attribute where one is already assigned does not result in the
previous context menu being destroyed. Thus, using the above examples, neither of the following statements results
in CONTEXT-MENU-1 being destroyed:

PROCESS GUI ACTION DELETE WITH #LB-1 /* #CONTEXT-MENU-1 LIVES ON
#LB-1.CONTEXT-MENU := #CONTEXT-MENU-2 /* SAME HERE
Invocation

The invocation of static context menus is transparent to the application. The tracking of the context menu and the
triggering of the events associated with the menu items is done by Windows and Natural. The context menu is
always displayed at the current mouse cursor position. Therefore, there are no new PROCESS GUI statements for
displaying context menus.

However, in order to support dynamic context menus or static context menus that need to be modified at runtime
(e.g. to disable or check particular menu items before the context menu is displayed), context menus and submenus
receive BEFORE-OPEN event his applies to submenus belonging to a menu bar as well as to submenus

belonging to a context menu. In addition, it is possible to suppress this event via the use of a new attribute,
SUPPRESS-BEFORE-OPEN-EVENWhich defaults to SUPPRESSED. Assuming the event is not suppressed, the
BEFORE-OPEN event will be triggered immediately before a context menu is displayed. This gives the application
the chance to modify the context menu according to the current program state. For example, menu items could be
added or deleted, or particular menu items grayed or checked. Here is some sample code for the BEFORE-OPEN
event:

Copyright Software AG 2002 23

Invocation Event-Driven Programming Technigues

/* DELETE FIRST MENU ITEM:
PROCESS GUI ACTION DELETE WITH #MITEM-1
/* CHECK SECOND MENU ITEM:
#MITEM-2.CHECKED := CHECKED
/* DISABLE THIRD MENU ITEM:
#MITEM-3.ENABLED := FALSE
/* INSERT NEW MENU ITEM BEFORE #MITEM-3:
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #MITEM-4

TYPE = MENUITEM

DIL-TEXT ="Invokes the first item’

PARENT = #CONTEXT-MENU-1

STRING ="ltem 3’

SUCCESSOR = #MITEM-3

END-PARAMETERS GIVING *ERROR

For context menus not created by the dialog editor, the handling of the BEFORE-OPEN event must be done in the
DEFAULT event for the dialog. Note also that if a control or dialog is disabled, no context menu is displayed, and
the BEFORE-OPEN event is also not triggered. The same applies if the context menu itself is disabled. For example:

#CONTEXT-MENU-1.ENABLED := FALSE /* DISABLE CONTEXT MENU DISPLAY

Note that it is possible to disable the context menu in this way during the BEFORE-OPEN event, allowing selective
disabling of the context menu depending on the mouse cursor position within the control. For example, it might be
desired to only display a context menu if the mouse cursor is over a selected list-box item. Determining whether this
is the case is possible via the use of two PROCESS GUI ACTION calls:

® INQ-CLICKPOSITIONhas been extended to controls other than bitmaps and canvasses to return the (X, Y)
position of the right mouse button click within the control. This is updated immediately prior to the sending of
the BEFORE-OPEN event.

e INQ-ITEM-BY-POSITION. This allows translation of the relative co-ordinate returned by
INQ-CLICKPOSITION applied to a list box to the corresponding item.

As an example of the use of these two new actions, consider the situation where we want to detect whether the cursor
was over a selected list-box item when the right mouse button was pressed in order to determine whether to display a
context menu or not. This can be achieved by the following code in the BEFORE-OPEN event of the associated
context menu:

PROCESS GUI ACTION INQ-CLICKPOSITION WITH
#LB-1 #X-OFFSET #Y-OFFSET

PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#LB-1 #X-OFFSET #Y-OFFSET #LBITEM

#MENU =*CONTROL

IF #LBITEM = NULL-HANDLE /* NO ITEM UNDER (MOUSE) CURSOR */
#MENU.ENABLED := FALSE
ELSE
IF #LBITEM.SELECTED = FALSE /* ITEM UNDER CURSOR DESELECTED */
#MENU.ENABLED := FALSE
ELSE /* ITEM UNDER CURSOR IS SELECTED */
#MENU.ENABLED := TRUE
END-IF
END-IF

In some cases, it may be desired to automatically select the item under the mouse cursor if it is not already selected,
clearing any existing selection. For list boxes, it is possible to achieve this by using tAE T&SELECT

attribute, either directly or via the new 'Autoselect’ check box (see previous bitmap) in the List Box Attributes
window in the dialog editor. If this attribute is set to TRUE, Natural will automatically update the selection before
sending the BEFORE-OPEN event, if the context menu was invoked over an unselected list-box item.

24 Copyright Software AG 2002

Event-Driven Programming Techniques Sharing of Context Menus

For table controls, any change in the selection must be done via the application itself in the BEFORE-OPEN event.
To make this possible, another new PROCESS GUI ACTION has been introduced for table controls:

® TABLE-INQUIRE-CELL. This returns the cell’'s row and column number (starting from 1) for a relative (X, Y)
position within the table. This position can (and would typically be) the position returned by a previous call to
PROCESS GUI ACTION INQ-CLICKPOSITION.

Sharing of Context Menus

It is of course possible to associate the same context menu with more than one object (i.e., control or dialog). For
example:

#LB-1.CONTEXT-MENU := #CTXMENU-1
#LB-2.CONTEXT-MENU := #CTXMENU-1

In such a scenario, we need to be able to determine for which control the context menu was invoked. We cannot use
*CONTROL in the BEFORE-OPEN event, because this will contain the handle of the context menu itself. Instead, it
is necessary to inquire which control has the focus, since Natural automatically places the focus on the control for
which the context menu is being invoked. Here is some sample BEFORE-OPEN event code illustrating the use of

this technique:

PROCESS GUI ACTION GET-FOCUS WITH #CONTROU
DECIDE ON FIRST VALUE OF #CONTROL
VALUE #LB-1
#MITEM-17.ENABLED := FALSE
VALUE #LB-2
#MITEM-17.CHECKED := CHECKED
NONE
IGNORE
END-DECIDE

Copyright Software AG 2002 25

System Variables Event-Driven Programming Techniques

System Variables

Whenever you specify an event to occur with a given dialog element, the dialog editor generates code containing the
Natural system variables *CONTROL, *DIALOG-ID and *EVENT.

During the processing, *CONTROL contains the dialog element’s handle, *EVENT contains the event name and
*DIALOG-ID identifies an instance of a dialog.

You can reference these system variables whenever you enter Natural code within the dialog editor. If, for example,
the end user clicks on a push-button control and the event handler calls a shared subroutine, you can use these systen
variables as logical condition criteria to trigger the subroutine.

For further details on these system variables, seldheal Reference Manual

Generated Variables
#DLG$PARENT

You use this generated variable of type "user" to work with MDI child windows, for example. When you create a
dialog, Natural generates this variable in order to hold the handle of the parent dialog. In event-handler code, you
can, for example, use this variable to open an MDI child dialog from another MDI child dialog, as shown below.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid conflicts with generated
variables.

26 Copyright Software AG 2002

Event-Driven Programming Techniques #DLGSWINDOW

Example:

OPEN DIALOG 'MDICHILD’ #DLG$PARENT #CHILD-ID

#DLG$WINDOW

You use this generated variable to dynamically set the attributes within a dialog. When you create a dialog, Natural
generates this variable in order to hold the handle of the dialog window. #DLG$WINDOW is the default name of
this variable; you may change it by overwriting the "Name" entry in the upper left of the dialog’s attributes window.
In event-handler code, you can, for example, use this variable to minimize the dialog window if certain logical
condition criteria are met, as shown below.

#DLGSWINDOW represents the graphical user interface aspects of a dialog, while the *DIALOG-ID system
variable represents the runtime aspects. *DIALOG-ID must be used in OPEN DIALOG, CLOSE DIALOG and
SEND EVENT statements.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid conflicts with generated
variables.

Example:

IF ...
#DLG$WINDOW.MINIMIZED := TRUE
END-IF

Copyright Software AG 2002 27

Message Files and Variables as Sources of Attribute Values Event-Driven Programming Technigues

Message Files and Variables as Sources of Attribute Values

Most dialog elements have a STRING attribute. As an alternative to specifying the attribute value by typing in the
text in the "String" entry of the attributes window, you can select a variable or a message file number from which the
text is taken at runtime. In this case, the attribute value is determined by the variable’s current value or the selected
message file at the dialog element’s creation time. You can also specify attribute sources for the
BITMAP-FILE-NAME, DIL-TEXT and ACCELERATOR attributes.

» To select a message file number or specify a variable

1. Invoke the dialog element’s attribute window.
2. Push the "Source" button to the right of the "String" entry.

The "Attribute Source" dialog box appears. The default attribute source is "Constant”; you can also enter the number
of the message file, or enter the variable name.

Note: If you are using an integer variable as the source of an attribute value, note that at runtime, the message with
the corresponding number from your message file will be displayed. To avoid this, you can MOVE the contents of
this integer variable to a variable of format N, for example.

Triggering User-Defined Events

Aside from standard events, such as before-open, you may define user-defined events for dialogs. User-defined
events are useful whenever it is necessary for one dialog to cause an action to occur in another dialog.

A user-defined event occurs whenever you have specified a SEND EVENT statement in dialog A with the name of a
user-defined event in the target dialog B. This target dialog B for which you wish to trigger the user-defined event
must already be active. You can activate dialog B by using the OPEN DIALOG statement. If you do not issue the
OPEN DIALOG statement first, the SEND EVENT statement will cause a runtime error.

You can define your own events for dialogs by pressing the "New" button in the "Events" dialog event handler menu
or from the dialog’s context menu. Enter any name for your newly-defined event and specify the corresponding
event section. It is recommended that this name begin with "#" to distinguish your event from predefined events.

During execution of an event handler, the SEND EVENT statement triggers the user-defined event handler in a
different dialog. After this user-defined event handler has been executed, control will be returned to the previous
dialog, whose execution will resume at the statement following the SEND EVENT statement. This can be compared
to a CALLNAT statement that causes a subprogram to be executed.

Similar to the OPEN DIALOG statement, parameters may be passed to the dialog. In order to pass parameters
selectively PARAMETERS-clauyeyou have to specify the name of the dialog in addition to the identifier of the
dialog (operand?2)

The SEND EVENT statement must not trigger an event in a dialog that is about to process an event. This is the case,
for example, when dialog A sends an event to dialog B and the event handler in dialog B sends an event to dialog A
which has not yet finished its event handling. A similar case is when dialog A opens dialog B and the before-open or
after-open event contains a SEND EVENT back to dialog A.

To trigger a user-defined event, you specify the following syntax:

SEHD EVENT opezaodt TO [MALDG=ID] opezads

" WdTH faeaad 3. }
USING [LOG] “Fiaig-rame’ WTH PARAMETERS -¢laus e

-

28 Copyright Software AG 2002

Event-Driven Programming Techniques Passing Parameters to the Dialog

Operands
Operandlis the name of the event to be sent.

Operand2is the identifier of the dialog receiving the user-defined event and must be defined with format/length 14.
You can retrieve this identifier, for example, by querying the value of #DLG$PARENT.CLIENT-DATA.

Passing Parameters to the Dialog
It is possible to pass parameters to the dialog receiving the user event.
As operand3you specify the parameters which are passed to the dialog.

With the PARAMETERS-clausparameters may be passed selectively.

PARAMETERS-clause

PARAKMETERS iﬂa.ﬂz.we:e.-'-.va.we =opeasr’ | EHD-PARAMETER S

Note: You may only use the PARAMETERS-clause if the target dialog is cataloged.
Dialog-nameis the name of the dialog receiving the user-defined event.
When you use onlgperand3o pass parameters, it might look like this:

Example:

/* The following parameters are defined in the dialog’s

[* parameter data area:

1 #DLG-PARM1 (A10)

1 #DLG-PARM2 (A10)

1 #DLG-PARM3 (A10)

1 #DLG-PARM4 (A10)

I* When sending the user-defined event, pass the operands #MYPARM1 'MYPARM?2' to
the parameters #DLG-PARM1 and #DLG-PARM2:

SEND EVENT 'MYEVENT' TO #DLG$DIA-ID WITH #MYPARM1 'MYPARM?2'

Copyright Software AG 2002 29

Passing Parameters to the Dialog Event-Driven Programming Techniques

When you use theARAMETERS-clauséhe user-defined event might look like this:

Example:

/* The following parameters are defined in the dialog’s
/* parameter data area:
1 #DLG-PARML1 (A10)
1 #DLG-PARM2 (A10)
1 #DLG-PARM3 (A10)
1 #DLG-PARM4 (A10)
/* When sending the user-defined event, the operand #MYPARM?2 is passed to the
[* parameter #DLG-PARM2 and the operand 'MYPARM3' is passed to the parameter
/* #DLG-PARM3:
SEND EVENT 'MYEVENT’ TO #DLG$DIA-ID
USING DIALOG '"MYDIALOG’
WITH PARAMETERS
#DLG-PARM3="MYPARM3’
#DLG-PARM2=#MYPARM2
END-PARAMETERS

To avoid format/length conflicts between operands passed and their parameter definitions, see the BY VALUE
option of the DEFINE DATA statement in tifatural Statements Manual

30 Copyright Software AG 2002

Event-Driven Programming Techniques Suppressing Events

Suppressing Events

If an event occurs, normally an event handler will be triggered. It may, however, sometimes be necessary to
dynamically suppress the execution of the event-handler code whenever the event has occurred. For example, if you
want to modify the string of an input field control within the change-event handler, you must suppress the change
event before modification to avoid an infinite loop because the modification itself triggers a change event.

The event-handler code may look like this:

Example:
IF... /* Logical condition criteria
#IF-1.SUPPRESS-CHANGE-EVENT ;= SUPPRESSED /* Suppress the event
END-IF

By default, the dialog editor generates code to suppress all events for which no event handler code has been entered.
In the dialog editor, you can also suppress an event with the Suppress option in the "Events..." dialog box.

If you suppress an event, the before-any and after-any events are also suppressed for this event.

Copyright Software AG 2002 31

Menu Structures, Toolbars and the MDI Event-Driven Programming Technigues

Menu Structures, Toolbars and the MDI

Creating a Menu Structure
A menu structure consists of three types of dialog elements:

® menu-bar controls,
® menu items,
® submenu controls.

A menu structure has one menu-bar control consisting of several menu items. The menu bar with its items is
displayed directly beneath the window’s title bar. Each menu item may be simple or may represent a submenu
control, which allows you to pull down several menu items grouped vertically. Therefore, submenu controls may
contain items representing a submenu control one level lower. A submenu control becomes visible when the
representing item in the menu-bar control or the parent submenu control is clicked upon.

There are two ways to create menu structures:

e Use the dialog editor; or
e use Natural code.

If you use the dialog editor

1. Check the "Menu Bar" entry in the dialog’s attribute window. Click OK.
When you go back to the dialog, a dummy menu-bar control appears.

2. Double-click on the dummy menu-bar control, or from the Natural Menu, select "Dialog > Menu Bar", or use
CTRL+M.
The "Dialog Menu Bar" dialog box appears. This dialog box is divided into three group frames: menu bar,
selected submenu and selected menu item.

3. In the selected menu items group frame, use "New" to add a menu item behind the selected position, or at the

beginning. Now use the selected menu-item group frame to modify attribute values or add event handlers to the

new menu item.
Normal menu items have a click event whose code is executed when the end user clicks on the menu item.

Note: The MENU-ITEM-TYPE of the menu item can also be "Separator”, in which case the item is no text item.

If you use Natural code

1. Create a Menu Bar with the PARENT attribute set to 'NULL-HANDLEwsintowhandlé

2. To create a simple menu item: the PARENT attribute must have the manebarhandlename

3. To create a submenu control: the submenu control's PARENT attribute must have the value 'NULL-HANDLE’
or 'windowhandlenanieThen create a menu item with PARENTmeénubarhandlenamand
MENU-HANDLE = 'submenuhandlename’

4. Then associate the menu bar with a dialog window by updating the window's MENU-HANDLE attribute with
the handle of the menu bar as set in the first step.

5. The event handling for the dynamically created menu items must be done in the default event handler, as
described in the sectidthow to Create and Delete Dialog Elements Dynamically

The PARENT attribute determines when the menu bar or the submenu control will be destroyed. When PARENT =

'windowhandlenanigthe menu bar/the submenu control will be destroyed when the window is destroyed. This is
the default setting, which is also used by the dialog editor. If PARENT = NULL-HANDLE, the menu bar/the
submenu control will be destroyed only when the application is terminated.

32 Copyright Software AG 2002

Event-Driven Programming Techniques Parent-Child Hierarchy in Menu Structures

If you define the menu structure’s handles inside a global data area, you can share these definitions among several
dialogs.

¥ To build the above menu structure

1. Define the handles of the menu-bar control, the menu items, and the submenu control(s) as the user-defined
variables in the handler of the applicable event.

2. Create the controls and items by assigning values to the attributes (PARENT, ...) and by executing the
PROCESS GUI statement action ADD.

. Create the controls and items in the sequence menu-bar control, submenu control with menu items.

4. Insert the controls and items in the sequence submenu control into menu-bar control, and menu-bar control into
dialog window.

w

You can study how to build a menu structure in code by using the enhanced dialog list mode to list a dialog with an
editor-built menu. To get a code model for creating a menu item, create a menu-bar control with the dialog editor, go
to the menu-bar control attributes window, cut a menu item and paste it into any chosen event-handler section. The
generated code for the menu item appears.

Parent-Child Hierarchy in Menu Structures

Sometimes, it is necessary to use code for going through each element in a menu structure. For menus, the
parent-child hierarchy is structured in a way that is not evident from the graphical representation of the menu
structure.

Farent-chid hieratchy Cotre spanding meny s chee
k| Y ;‘MBd
Dialo g v [HF HI-E 4
'.L'HH.'I

M-TE [H-z3

MI-Z.2

ME-1 z [

r

o
M-z -1 K14

— . Eparentof
— - — - —a MEMU-HAMDLE abiribwbe conk@ing submeny Handk value

Nsubmeny contak MED menu Bar conbol; Mi-ea menu dem

In the above diagram, the first child of the dialog would be the menu-bar control. Its successor would be submenu
control S1, and so on. To go from menu item MI-1 to submenu S1, you query for the MENU-HANDLE attribute
value of MI-1. The value you get is the handle value of S1.

Creating a Toolbar
There are two ways of creating toolbars and their items:

® Use the dialog editor; or
® use Natural code to create them dynamically.

Copyright Software AG 2002 33

Sharing Menu Structures, Toolbars and DILs (MDI Application) Event-Driven Programming Techniques

» To use the dialog editor

1. Double-click on the toolbar or from the Natural Menu, select "Dialog > Toolbar".
The toolbar attributes window opens.

2. Add toolbar items by clicking on the "New" push button.

3. Assign bitmap file names and other attribute values to the new toolbar item.

If you want to use Natural code for dynamic creation, you can study how to build a tool bar in code. Use the
enhanced dialog list mode to list a dialog with an editor-built tool bar.

Sharing Menu Structures, Toolbars and DILs (MDI Application)

An MDI (multiple document interface) application consists of a frame dialog that provides the menu structure,
toolbar, and DIL shared among all child dialogs. An MDI frame dialog allows you to tile or cascade its child dialogs.

Note: You may only share the toolbar if the PARENT of the toolbar is the dialog of the highest level (the main
dialog of an application).

» To create an MDI frame dialog

1. Use the dialog editor, and go to the dialog object’s attributes window.
2. Choose "MDI frame window" in the "Type" entry.

An MDI frame dialog must not contain dialog elements other than menu-bar control, submenu control, menu item,
toolbar, and toolbar item.

» To create an MDI child dialog

1. Use the dialog editor, and go to the dialog object’s attributes window.
2. Choose "MDI child window" in the "Type" entry.

An MDI child dialog:

can be moved and sized only inside the area of their MDI frame dialog;

can be maximized to the full size of the area of their MDI frame dialog;

can be minimized, after which its icon appears at the bottom of its MDI frame dialog;

can have its own menu structure, toolbar, and DIL. Those do not appear inside the child dialog but are displayed

in the MDI frame dialog when the child dialog is active. When another MDI child dialog becomes active, the

menu structure, toolbar, and DIL change at the same time;

® can be arranged in a tile or cascade by setting a menu item’s attribute MENU-ITEM-TYPE to the values "MDI
Cascade" or "MDI Tile";

® can have its title added to the end of an MDI-WINDOWMENU type submenu control. By choosing one of

these menu items, the corresponding MDI child dialog becomes active.

If you want to open an MDI child dialog from within an MDI frame dialog, you can, for example, create a menu item
in a menu structure of an MDI frame dialog and define a click event for the menu item. You then write the OPEN
DIALOG code for opening an MDI child dialog in the click event handler. The end user will open the MDI child
dialog from within the MDI frame dialog by clicking on the menu item, triggering the click event handler.

Example:

OPEN DIALOG 'MDICHILD’ #DLG$WINDOW #CHILD-ID

The first operand is the name of the dialog created by the dialog editor by selecting "MDI child window" in the
"Type" selection box. The second operand is the parent of the new MDI child dialog. This must be the MDI frame
dialog. The third operand is a Natural variable defined as 14 in the dialog’s data areas. This variable receives the

34 Copyright Software AG 2002

Event-Driven Programming Techniques Sharing Menu Structures, Toolbars and DILs (MDI Application)

dialog ID returned by the system.
Note: #DLGSWINDOW is a generated variable.

You can also open an MDI child dialog from within another MDI child dialog (open a sibling of your MDI child
dialog). Then you write a similar click-event handler as above:

Example:

OPEN DIALOG 'MDICHILD’ #DLG$PARENT #CHILD-ID

The first and the third operands are the same as above. The second operand must be the parent of both MDI child
dialogs.

Note: #DLG$PARENT is a generated variable.

Copyright Software AG 2002 35

Executing Standardized Procedures Event-Driven Programming Technigues

Executing Standardized Procedures

For procedures frequently needed in event-driven applications, the following is available:

® a set of PROCESS GUI statement actions and
e a set of NGU-prefixed subprograms and dialogs in library SYSTEM.

Examples for frequently needed procedures are starting up a message box, reading the lines entered into an edit area
control, or dynamically creating dialog elements.

For your convenience, the local data areas NGULKEY1 and NGULFCT1 are automatically included in the list of
local data areas used by any new dialog.

® NGULFCT1 is necessary to use the NGU-prefixed subprograms and dialogs;

e NGULKEY1 lists reserved keywords to be used in any event-handler code. This enables you to refer to certain
attribute values by the more meaningful keyword rather than by the numeric IDs. It also enables you to use
meaningful dialog element names as parameters.

For more information on the PROCESS GUI statement actions, subprograms and dialogs available, and on the
parameters that can be passed, see the cliagenting Standardized Proceduoéshe Natural Dialog Components
Manual.

PROCESS GUI Statement

-

soeranat_ .. }

PROCESS GUI ACTIOH zofon-azme YATH {WMTEHS-G-EME

-

GG coezad?]

Ope rand Passibl Shuch re Fassibk Fomnals Friefire nCe Dynan ic
CEAGH AW P FEDTLC |Permited Defnition

Operandd L LRI

Qe Fandd " HoHH "

The PROCESS GUI statement is used to perform an action. An action in this context is a procedure frequently
needed in event-driven applications.

As action-nameyou specify the name of the action to be invoked.

As operand] you specify the parameter(s) to be passed to the action. The parameters are passed in the sequence in
which they are specified.

36 Copyright Software AG 2002

Event-Driven Programming Techniques PROCESS GUI Statement

For the action "ADD", you can also pass parameters by name (instead of position); to do so, you use the
PARAMETERS-clause

PARAMETERS [pzaz.we!e.-‘-nz.we sopeaad? | EMD-PARAMETERS

This clause can only be used for the action "ADD", not for any other action.

As operand? you can specify a field to receive the response code from the invoked action after the action has been
performed.

Copyright Software AG 2002 37

Linking Dialog Elements to Natural Variables Event-Driven Programming Technigues

Linking Dialog Elements to Natural Variables

In cases where you want to map database fields or other program variables to the user interface, input-field controls
and selection-box controls may be linked to Natural variables. This makes it easier to modify and query them.

If the end user has entered data in an input-field control or a sebox control and sets the focus to another dialog
element, a leave event occurs and the content (STRING) is moved to the variable. Thus, the variable is updated. Note
that the variable wilhot be updated if the end user enters data and a change event occurs.

» To refresh the content of the dialog element after the linked variable has been modified
in code

Use the PROCESS GUI statement action REFRESH-LINKS.
Modifying and querying input-field controls with the ASSIGN statement would normally work like this:

Example:

#IF-1.STRING :='12345’
#TEXT = #IF-1.STRING

However, you can also link a Natural variable to the input-field control or selection box control. You can also link an
indexed variable to a dialog element or an array of dialog elements.

To link a variable in Natural code, set the attribute LINKED to TRUE and modify the attribute VARIABLE by
setting it to the Natural variable name:

Example:

#IF-1.LINKED := TRUE
#IF-1.VARIABLE := MYVARIABLE

38 Copyright Software AG 2002

Event-Driven Programming Techniques Linking Dialog Elements to Natural Variables

» To use the dialog editor to enter the name of the Natural variable

1. Double-click on your input-field control.
The corresponding attributes window appears.
2. Click on the "Source" push button to the right of the "String" entry.
The "Source fohandlenamédialog box appears.
3. Choose "Linked variable".
4. Enter the variable name (such as MYVARIABLE in the example above).

There are two possibilities to link an indexed variable such as "MYVARIABLE (A20/1:5)":

® you link a single dialog element to the indexed variable; then you specify the index, such as
"MYVARIABLE(2)" in the variable name field of the "Source foandlenamédialog box, or

® you link an array of dialog elements to the indexed variable; then you do not specify an index in the variable
name field. In this case, the occurrences of the array and the index of the variable must be compatible.
"MYVARIABLE (A20/1:5)" could be linked to a one-dimensional array with up to five occurrences.

Copyright Software AG 2002 39

Validating Input in a Dialog Element Event-Driven Programming Techniques

Validating Input in a Dialog Element

If an input-field control or a sebox control is linked to a Natural variable, this dialog element may be checked
automatically when it loses the focus to another dialog element in the same dialog. This enables you to validate the
end user’s input. An input field control or a sebox control will not be checked when the end user clicks on a menu
item or switches to another application.

If you specify an edit mask with one of these two dialog elements, the field content is checked against this edit mask
plus the Natural data type of the linked variable.

If no edit mask is specified, the field content is checked against the Natural data type only.
There are two ways of specifying an edit mask in an input-field control or a selection box control:

e Use Natural code; or
® use the dialog editor.

The Natural code might look like this:

Examples:

/* Create an input-field control
1 #IF-1 HANDLE OF INPUTFIELD

/* Assign the Edit Mask
#IF-1.EDIT-MASK :='999’

» To specify the edit mask with the dialog editor
Open the input-field control’s attribute window and use the "Edit Mask" entry.

When the field check fails, a message box comes up where the end user can choose "Retry" or "Cancel". "Retry"
means that the entered text string remains unchanged and can be corrected. "Cancel" means that the field is reset to
the current content of the linked variable.

40 Copyright Software AG 2002

Event-Driven Programming Techniques Storing and Retrieving Client Data for a Dialog Element

Storing and Retrieving Client Data for a Dialog Element

For a number of dialog elements, the CLIENT-DATA attribute may hold an arbitrary 14 value. This may be useful
for linking data to a specific dialog element. A list-box item, for example, can receive and pass on the ISN of a
database record. The CLIENT-DATA attribute value may be changed at any time.

In Natural code, this might look like this:

Example:

DEFINE DATA
LOCAL
1 #LBITEM-1 HANDLE OF LISTBOXITEM

1 #ISN (14)
END-DEFINE
READ...

#LBITEM-1.CLIENT-DATA:= #ISN
END-READ

Note: The CLIENT-DATA attribute of a dialog is reserved for its dialog ID.

Client data may also be set and retrieved as alphanumeric string. In this case, you use the CLIENT-KEY and
CLIENT-VALUE attributes in combination.

1. You first assign a value to the CLIENT-KEY attribute. This determines the key under which the string is to be
stored for a dialog element.
2. You then assign an alphanumeric string to the CLIENT-VALUE attribute of the dialog element.

This enables you to store a number of key/value pairs for one dialog element.

Example:

#LB-1.CLIENT-KEY:="ANYKEY’
#LB-1.CLIENT-VALUE:="ANYSTRING’ [* The string to be stored

» To query a dialog element for a particular string

1. You first assign a CLIENT-KEY value to the dialog element.
2. Then you query the dialog element for the corresponding CLIENT-VALUE.

If you assign a value to the CLIENT-KEY of a dialog element, this value is also valid for subsequent querying and
modifying of other dialog elements.

If you query the CLIENT-VALUE of a CLIENT-KEY and there is no such pair among the key/value pairs of the
dialog element, an empty string (' ") is returned.

It is advisable to reuse keys that are not needed because you may use only a limited number of keys.

Example:

Copyright Software AG 2002 41

Storing and Retrieving Client Data for a Dialog Element Event-Driven Programming Techniques

#LB-1.CLIENT-KEY:="ANYKEY’
IF #LB-1.CLIENT-VALUE EQ 'ANYSTRING’ THEN

END-IF

42 Copyright Software AG 2002

Event-Driven Programming Techniques Creating Dialog Elements on a Canvas Control

Creating Dialog Elements on a Canvas Control

You can use a canvas control as a background to draw the following dialog elements on it: the rectangle, line and
graphictext controls. These dialog elements "visualize" information. You can, for example, create three or four
rectangle controls, fill them with color and change their size at runtime. This way, you can build your own bar chart.

Once you have created a canvas control in the dialog, you can go on to create the rectangle, line and graphictext
controls in it.

Note: Graphictext controls do not repaint the background of the rectangle in which they are located. The background
of the rectangle is specified at creation time of the graphictext control. What they do repaint is only the text specified
in the text attribute.

» To create dialog elements on a canvas control
Use the PROCESS GUI statement action ADD.

The rectangle, line and graphictext controls are then displayed inside the borders of the canvas control; if they
exceed the canvas borders, they are clipped.

The following attributes are useful for controlling the behavior of the canvas control and the dialog elements on it:

® OFFSET-X and OFFSET-Y determine the x and y axis offset of the canvas control’s upper border against the
upper border of the area by which the rectangle, line or graphictext control have exceeded the canvas control's
borders.

® RECTANGLE-X, RECTANGLE-Y, RECTANGLE-W and RECTANGLE-H determine the size of a rectangle
control and its position relative to the underlying canvas control.

e P1-X, P1-Y, P2-X and P2-Y determine the start positiox{Pdnd the end position (B9 of a line control
relative to the underlying canvas control.

The following example illustrates how to create a canvas control and how to add four rectangle controls and two line
controls dynamically (these could be used as a bar chart).

Example:

Copyright Software AG 2002 43

Creating Dialog Elements on a Canvas Control Event-Driven Programming Techniques

44 Copyright Software AG 2002

Event-Driven Programming Techniques

1AMELE) IRRBLFdaiiFea, the following must be defined:
OREETWNGEANKIFEAOF CANVAS

ORBXARNGINDY =ARAINE

ORBGARNANDHEGER |INE

ORBATANRISH WG HECTANGLE
oEQﬁEﬁRﬂHND@kEQ&WE BLACK
0BARKGRRNB REERANRME = BLUE
g{‘&&%@ﬁﬁ RECTANGLE

RWE%@\ é&\ggmwwﬂﬁﬁﬁ&wm&lowmg must be defined:

\rIoN ADD WITH
ANGLE

R
HANE'NE V%Blﬁﬂr\ﬁmﬁb%v
RESEA AS 60

QEQME%;\B%%Q #CNV1

= 2
RERFRROUAR CObPUR-NAME = BLACK

3&@?@@@& R-COBEPUR-NAME = GREEN
RAMETERS

EMNSARE%QEF%E
BRAGE RESPHAGEION ADD WITH
PARREESRERS AGTION ADD WITH
PRARRMETERENVL
PXRENREGERVSLE
MABIBLE-YARIABLE = #H4
REQME%P&B@@ #YAX
BREGTANGLE-Y =180
REQTAMGLEH = 20
BEQTADSLE-W = -80
FOREGRPUND-COLOUR-NAME = BLACK
BAGKGRQGUND-COLOUR-NAME = MAGENTA
END:BARAMETERS
6IVINe RESBBNSE
PROCESS GUI ACTION ADD WITH
PARAMETERS
PARENT = #CNV1
TYPE = LINE
HANDLE-VARIABLE = #XAX
P1-X = 180
P1-Y = 180
P2-X = 20
P2-Y = 180
END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS
PARENT = #CNV1
TYPE = RECTANGLE
HANDLE-VARIABLE = #H1
RECTANGLE-X = 20
RECTANGLE-Y = 180
RECTANGLE-H = 20
RECTANGLE-W = -60
FOREGROUND-COLOUR-NAME = BLACK
BACKGROUND-COLOUR-NAME = RED
END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS
PARENT = #CNV1
TYPE = RECTANGLE

Copyright Software AG 2002

Creating Dialog Elements on a Canvas Control

45

Creating Dialog Elements on a Canvas Control Event-Driven Programming Techniques

46 Copyright Software AG 2002

Event-Driven Programming Techniques Working with ActiveX Controls

Working with ActiveX Controls

ActiveX controls are third-party custom controls that you can integrate in a Natural dialog.

Terminology

ActiveX controls and Natural use different terminology in two cases:

ActiveX Control | Natural

Property Attribute
Method PROCESS GUI Statement Actipn

How To Define an ActiveX Control

The handle of an ActiveX Control is defined similar as a built-in dialog element, but its individual aspects are coded
in double angle brackets.

Example:

01 #OCX-1 HANDLE OF <<OCX-Table.TableCtrl.1 [Table Control]>>

In the above example, 'Table.TableCtrl.1' is the program ID (ProgID) under which the ActiveX control is registered
in the system registry. The prefix 'OCX-" identifies the control as an ActiveX control. '[Table Control]’ is an
optional part of the definition and provides a readable name.

How To Create an ActiveX Control

You create an instance of an ActiveX control by using the PROCESS GUI statement action ADD. To do so, the
value of the TYPE attribute must be the ActiveX control's ProglD prefixed with the string 'OCX-" and put in double
angle brackets. The ProgID is the name under which the control is registered in the system registry. You can
additionally provide a readable name in square brackets. In addition to that, you can set Natural attributes such as
RECTANGLE-X as well as the ActiveX control’s properties. The property name must be preceded by the string
'PROPERTY-" and this combination must be put in double angle brackets. Furthermore, you can suppress the
ActiveX control’'s events. To do this, the event name must be preceded by the string 'SUPPRESS-EVENT this
combination must be delimited by double angle brackets. The value of the SUPPRESS-EVENT property is either the
Natural keyword 'SUPPRESSED’ or 'NOT-SUPPRESSED’.

Copyright Software AG 2002 47

Working with ActiveX Controls

Example:

PROCESS GUI ACTION ADD

WITH PARAMETERS
HANDLE-VARIABLE = #0CX-1
TYPE = <<OCX-Table.TableCtrl.1 [Table Control]>>
PARENT = #DLG$WINDOW
RECTANGLE-X = 44
RECTANGLE-Y =31
RECTANGLE-W =103
RECTANGLE-H = 46
<<PROPERTY-HeaderColor>> = H'FF0080’
<<PROPERTY-Rows>> = 16
<<PROPERTY-Columns>> = 4
<<SUPPRESS-EVENT-RowMoved>> = SUPPRESSED
<<SUPPRESS-EVENT-ColMoved>> = SUPPRESSED

END-PARAMETERS

Accessing Simple Properties

Simple properties are properties that do not have parameters. Simple properties of an ActiveX control are addressed

Event-Driven Programming Technigues

like attributes of built-in controls. The attribute name is built by prefixing the property name with 'PROPERTY-’
and enclosing it in angle brackets.The properties of an ActiveX control are displaye€omnipenent Browser
The following examples assume that the ActiveX control #0CX-1 has the simple properties 'CurrentRow’ and

'CurrentCol’.

Example:

* Get the value of a property.

#MYROW := #OCX-1.<&ItPROPERTY-CurrentRow>>
* Put the value of a property.
#0OCX-1.<&ItPROPERTY-CurrentCol>> := 17

The data types of ActiveX control properties are those defined by OLE Automation. In Natural, each of these data
types is mapped to a corresponding Natural data type. The following table shows which OLE Automation data type

is mapped to which Natural data type.

48

Copyright Software AG 2002

Event-Driven Programming Techniques Working with ActiveX Controls

OLE Automation data type NATURAL data type
VT_BOOL L
VT_BSTR A dynamic
VT_CY P15.4
VT_DATE T
VT_DECIMAL Pn.m
VT_DISPATCH HANDLE OF OBJECT
VT_ERROR 14
VT 11 12
VT 12 12
VT 14 14
VT_INT 14
VT _R4 F4
VT_R8 F8
VT U1 B1
VT U2 B2
VT _U4 B4
VT_UINT B4
VT_UNKNOWN HANDLE OF OBJECT
VT_VARIANT (any Natural data type)
OLE_COLOR (VT_Ul4) B3
HANDLE OF FONT,
VT_FONT (VT_DISPATCH IFontDisp*) HANDLE OF OBJECT (IFontDisp*)
A dynamic
VT_PICTURE (VT_DISPATCH IPictureDisp* :g';r?;rﬁif': OBJECT (IPictureDisp’

Read the table in the following way: Assume an ActiveX control #0CX-1 has a property named 'Size’, which is of
type VT_R8. Then the expression #0CX-1.<<PROPERTY-SIZE>> has the type F8 in Natural.

Note: The Component Browser displays the corresponding Natural data types directly.

Some special data types are considered individually in the following:

Colors

A property of type Color appears in Natural as a B3 value. The B3 value is interpreted as an RGB color value. The
three bytes contain the red, green and blue elements of the color, respectively. Thus for example H'FF0000’

corresponds to red, H'OOFFOO’ corresponds to green, H'O000FF’ corresponds to blue and so on.

Example:

Copyright Software AG 2002 49

Working with ActiveX Controls Event-Driven Programming Technigues

01 #COLOR-RED (B3)

#COLOR-RED := H'FF0000’
#0OCX-1.<<PROPERTY-BackColor>> := #COLOR-RED

Pictures

A property of type Picture appears in Natural as HANDLE OF OBJECT. Alternatively you can assign an Alpha
value to a Picture property. The Alpha value must then contain the file name of a Bitmap (.bmp) file.

Example (usage of Picture properties):

01 #MYPICTURE HANDLE OF OBJECT

* Assign a Bitmap file name to a Picture property.
#0OCX-1.<<PROPERTY-Picture>>:="'11100102.bmp’

* Get it back as an object handle.
#MYPICTURE := #OCX-1.<<PROPERTY-Picture>>

* Assign the object handle to a Picture property of another control.
#0OCX-2.<<PROPERTY-Picture>>:= #MYPICTURE

50 Copyright Software AG 2002

Event-Driven Programming Techniques Working with ActiveX Controls

Fonts

A property of type Font appears in Natural as HANDLE OF OBJECT. You can alternatively assign a HANDLE OF
FONT to a Font property. Additionally you can assign an Alpha value to a Font property. The Alpha value must then
contain a font specification in the form that is returned by the STRING attribute of a HANDLE OF FONT.

Example 1 (using HANDLE OF OBJECT):

01 #MYFONT HANDLE OF OBJECT

* Create a Font object.

CREATE OBJECT #MYFONT OF CLASS ’StdFont’
#MYFONT.Name :='Wingdings’

#MYFONT.Size := 20

#MYFONT.Bold := TRUE

*

* Assign the Font object as value to a Font property.
#0OCX-1.<<PROPERTY-TitleFont>> := #MYFONT

Example 2 (using HANDLE OF FONT):

01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT

* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2

TYPE = FONT

PARENT = #DLG$WINDOW

STRING ='/Tahoma/Bold/0 x -27/ANSI| VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR

* Assign the Font handle as value to a Font property.
#0OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2

Example 3 (using a font specification string):

01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT

* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2

TYPE = FONT

PARENT = #DLG$WINDOW

STRING ='/Tahoma/Bold/0 x -27/ANSI| VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR

* Assign the font specification as value to a Font property.
#0OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2.STRING

Copyright Software AG 2002 51

Working with ActiveX Controls Event-Driven Programming Technigues

Variants

A property of type Variant is compatible with any Natural data type. This means that the type of the expression
#OCX-1.<<PROPERTY-Value>> is not checked by the compiler, if "Value" is a property of type Variant. So the
assignments #OCX-1.<<PROPERTY-Value >> := #MYVAL and #MYVAL := #OCX-1.<<PROPERTY-Value >>

are allowed independently of the type of the variable #MYVAL. It is however up to the ActiveX control to accept or
reject a particular property value at runtime, or to deliver the value in the requested format. If it does not, the
ActiveX control will usually raise an exception. This exception is returned as a Natural error code to the Natural
program. Here it can be handled in the usual way in an ON ERROR block. You should check the documentation of
the ActiveX control to find out which data formats are actually allowed for a particular property of type Variant.

An expression like #OCX-1.<<PROPERTY-Value>> (where "Value" is a Variant property) can occur as source
operand in any statement. However, it can be used as target operand only in assignment statements.

Examples (usage of Variant properties):
(Assume that 'Value’ is a property of type Variant of the ActiveX control #0CX-1)

01 #STR1 (A100)
01 #STR2 (A100)

* These statements are allowed, because the Variant property is used
* as source operand (its value is read).

#STR1 := #OCX-1.<<PROPERTY-Value>>

COMPRESS #0OCX-1.<<PROPERTY-Value>> 'XYZ' to #STR2

* This leads to an error at compiletime, because the Variant

* property is used as target operand (its value is modified) in

* a statement other than an assignment.

COMPRESS #STR1 "XYZ" to #OCX-1.<<PROPERTY-Value>>

* This statement is allowed, because the Variant property is used
* as target operand in an assignment.

COMPRESS #STR1 'XYZ' to #STR2
#0OCX-1.<<PROPERTY-Value>> := #STR2

Arrays

A property of type SAFEARRAY of up to three dimensions appears in a Natural program as an array with the same
dimension count, occurrence count per dimension and the corresponding format. (Properties of type SAFEARRAY
with more than three dimensions cannot be used in Natural programs.) The dimension and occurrence count of an
array property is not determined at compiletime but only at runtime. This is because this information is variable and
is not defined at compiletime. The format however is checked at compiletime.

Array properties are always accessed as a whole. So no index notation is necessary and allowed with an array
property.

52 Copyright Software AG 2002

Event-Driven Programming Techniques Working with ActiveX Controls

Examples (usage of Array properties):
(Assume that 'Values’ is a property of the ActiveX control #0CX-1 an has the type SAFEARRAY of VT_l14)

01 #VAL-L (L/1:10)
01 #VAL-I (14/1:10)

* This statement is allowed, because the format of the property

* is data transfer compatible with the format of the receiving array.
* However, if it turns out at runtime that the dimension count or

* goccurrence count per dimension do not match, a runtime error will
* occur.

VAL-I(*) := #OCX-1.<<PROPERTY-Values>>

* This statement leads to an error at compiletime, because

* the format of the property is not data transfer compatible with
* the format of the receiving array.

VAL-L(*) := #OCX-1.<<PROPERTY-Values>>

Copyright Software AG 2002 53

Using The PROCESS GUI Statement Event-Driven Programming Technigues

Using The PROCESS GUI Statement

The methods of ActiveX controls are called as actionsHRAQCESS GUstatement. The same is the case with the
complex properties of ActiveX controls (i. e. properties that have parameters). The methods and properties of an
ActiveX control are displayed in th@omponent Browser

Performing Methods

To perform a method of an ActiveX control the PROCESS GUI statement is used. The name of the corresponding
PROCESS GUI action is built by prefixing the method name with 'METHOD-" and enclosing it in angle brackets.
The ActiveX control handle and the method parameters (if any) are passed in the WITH clause of the PROCESS
GUI statement The return value of the method (if any) is received in the variable specified in the USING clause of
the PROCESS GUI statement.

This means: To perform a method, you enter a statement

PROCESS GUI ACTION <<METHODmmethodname>> WITHhandlename [parameter]...
[USING method-return-operand]..

Examples:

* Performing a method without parameters:

PROCESS GUI ACTION <<METHOD-AboutBox>> WITH #OCX-1

* Performing a method with parameters:

PROCESS GUI ACTION <<METHOD-Createltem>> WITH #OCX-1 #ROW #COL #TEXT

* Performing a method with parameters and a return value:

PROCESS GUI ACTION <<METHOD-Removeltem>> WITH #OCX-1 #ROW #COL USING #RETURN

Formats and length of the method parameters and the return value are checked at compiletime against the definition
of the method, as it is displayed in Bemponent Browser

Getting Property Values

To get the value of a property that has parameters, the name of the corresponding PROCESS GUI action is built by
prefixing the property name with 'GET-PROPERTY-" and enclosing it in angle brackets. The ActiveX control

handle and the property parameters (if any) are passed in the WITH clause of the PROCESS GUI statement The
property value is received in the USING clause of the PROCESS GUI statement.

This means:

To get the value of a property that has parameters, you enter a statement

PROCESS GUI ACTION <<GET-PROPERTYpropertyname>> WITHhandlename [parameter]
USING get-property-operand

Example:

PROCESS GUI ACTION <<GET-PROPERTY-ltemHeight>> WITH #0OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against the
definition of the method, as it is displayed in @@mponent Browser

Putting Property Values

To put the value of a property that has parameters, the name of the corresponding PROCESS GUI action is built by
prefixing the property name with 'PUT-PROPERTY-" and enclosing it in angle brackets. The ActiveX control

handle and the property parameters (if any) are passed in the WITH clause of the PROCESS GUI statement The
property value is passed in the USING clause of the PROCESS GUI statement.

54 Copyright Software AG 2002

Event-Driven Programming Techniques Using The PROCESS GUI Statement

This means:
To put the value of a property that has parameters, you enter a statement

PROCESS GUI ACTION <<PUT-PROPERTYpropertyname>> WITHhandlename [parameter]
USING put-property-operand

Example:

PROCESS GUI ACTION <<PUT-PROPERTY-ltemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against the
definition of the method, as it is displayed in @emponent Browser

Optional Parameters

Methods of ActiveX controls can have optional parameters. This is also true for parameterized properties. Optional
parameters need not to be specified when the method is called. To omit an optional parameter, use the placeholder
1X in the PROCESS GUI statement. To omit n optional parameters, use the placeholder nX.

In the following example it is assumed that the method SetAddress of the ActiveX control #0CX-1 has the
parameters FirstName, Middlelnitial, LastName, Street and City, where Middlelnitial, Street and City are optional.
Then the following statements are correct:

Example:

* Specifying all parameters.

PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName Middlelnitial LastName Street City

* Omitting one optional parameter.

PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName 1X LastName Street City

* Omitting the optional parameters at end explicitly.

PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #0OCX-1
FirstName Middlelnitial LastName 2X

* Omitting the optional parameters at end implicitly.

PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName Middlelnitial LastName

Omitting a non-optional (mandatory) parameter results in a syntax error.
Error handling
The GIVING clause of thPROCESS GUstatement can be used as usual to handle error conditions. The error code

can either be caught in a user variable and then be handled, or the normal Natural error handling can be triggered and
the error condition be handled in an ON ERROR block.

Example:

DEFINE DATA LOCAL
1 #RESULT-CODE (N7)

END-DEFINE

* Catching the error code in a user variable:
PROCESS GUI ACTION <<METHOD-Removeltem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING #RESULT-CODE

* Triggering the Natural error handling:
PROCESS GUI ACTION <<METHOD-Removeltem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING *ERROR-NR

Copyright Software AG 2002 55

Using The PROCESS GUI Statement Event-Driven Programming Technigues

Special error conditions that can occur during the execution of ActiveX control methods are:

e A method parameter, method return value or property value could not be converted to the data format expected
by the ActiveX control. (These format checks are normally already done at compiletime. In these cases no
runtime error can be expected. However, note that method parameters, method return values or property values
defined as Variant are not checked at compiletime. This applies also for arrays and for those data types that can
be mapped to several possible Natural data types.)

e A COM or Automation error occurs while locating and executing a method.

® The ActiveX control raises an exception during the execution of a method.

In these cases the error message contains further information provided by the ActiveX control, which can be used to
determine the reason of the error with the help of the documentation of the ActiveX control.

Using Events With Parameters

Events sent by ActiveX controls can have parameters. In the controls event-handler sections, these parameters can be
gueried. Parameters passed by reference can also be modified. The events of an ActiveX control, the names and data
types of the parameters and the fact if a parameter is passed by value or by reference is all displayed in the
Component Browser.

Event parameters of an ActiveX control are addressed like attributes of built-in controls. The attribute name is built
by prefixing the parameter name with 'PARAMETER-’ and enclosing it in angle brackets. Alternatively, parameters
can be addressed by position. This means the attribute name is built by prefixing the number of the parameter with
'PARAMETER-" and enclosing it in angle brackets.The first parameter of an event has the number 1, the second the
number 2 and so on. These attribute names are only valid inside the event handler of that particular event.

In the following examples it is assumed that a particular event of the ActiveX control #0CX-1 has the parameters
KeyCode and Cancel. Then the event handler of that event might contain the following statements:

Example:

* Querying a parameter by name:

#PRESSEDKEY := #OCX-1.<<PARAMETER-KeyCode>>
* Querying a parameter by position:

#PRESSEDKEY := #OCX-1.<<PARAMETER-1>>

Parameters that are passed by reference can be modified in the event handler. In the following example it is assumed
that the Cancel parameter is passed by reference and is thus modifiable. Then the event handler might contain the
following statements:

Example:

* Modifying a parameter by name:
#0OCX-1.<<PARAMETER-Cancel>>:= TRUE
* Modifying a parameter by position:
#0CX-1.<<PARAMETER-2>>:= TRUE

Suppressing Events At Runtime

To suppress or unsuppress an event of an ActiveX control at runtime, modify the corresponding suppress event
attribute of the control. The name of the suppress event attribute is built by prefixing the event name with
'SUPPRESS-EVENT-’ and enclosing it in angle brackets. The events of an ActiveX control are displayed in the

Component Browser

The following example assumes that the ActiveX control #0CX-1 has the event ColMoved.

56 Copyright Software AG 2002

Event-Driven Programming Techniques Using The PROCESS GUI Statement

Example:

* Suppress the event.

#0OCX-1.<<SUPPRESS-EVENT-ColMoved>> := SUPPRESSED

* Unsuppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := NOT-SUPPRESSED

Copyright Software AG 2002 57

Working with Arrays of Dialog Elements Event-Driven Programming Techniques

Working with Arrays of Dialog Elements

It is sometimes convenient to arrange dialog elements in one or two dimensions. If, for example, you want to arrange
several radio-button controls in one column, it is possible to draw the first one and specify the others as a
one-dimensional array.

» To work with arrays of dialog elements:

1. Click the "Array" button in the radio-button control’s attributes window.
The "Array Specification" dialog box appears.
. Enter:

N

the number of dimensions;

the bounds of the first and second dimension, if applicable;

the spacing on the x and y axis in pixels (depending on whether the array is arranged in rows or in columns);
the arrangement (rows or columns).

The array will now be treated as a graphical entity. Note that you will have to assign a common GROUP-ID attribute
to each radio-button control. This will enable you to treat the array as a logical entity.

For each dialog element in an array, the following attributes may be specified separately:

e STRING
® DIL-TEXT
e BITMAP-FILE-NAME

In an event handler for an array of dialog elements, the system variable *CONTROL will denote one of the array
elements.

If a variable is selected as the source of an attribute value, the array must contain at least the index ranges of the
dialog element.

If a message file ID is specified as the source of an attribute value, consecutive messages are taken for the array’s
sequence of dialog elements.

In an array of dialog elements, you can assign one value to all dialog elements in the array using the (*) notation or a
range, such as in the following examples:

58 Copyright Software AG 2002

Event-Driven Programming Techniques Working with Arrays of Dialog Elements

Examples:

#PB-1.ENABLED(*) := TRUE /*invalid
#PB-1.ENABLED(1:3) := TRUE /*invalid

An alternative way of creating a sequence of identical dialog elements is to duplicate or copy and paste an individual
dialog element and use the grid plus the cross-hair cursor to place them.

The following example illustrates how to set the STRING attribute of occurence 2 in a one-dimensional push-button
array:

Examples:

#PB-2.STRING(2) := '"HUGO’

Copyright Software AG 2002 59

Working with Control Boxes Event-Driven Programming Technigues

Working with Control Boxes

A control box is is used to enhance the effectiveness of the nested control support. However, control boxes have a
number of unique features that merit their separate discussion.

Control boxes are, in themselves, fairly inert controls, belonging to the same category as text constants and group
frames in that they cannot receive the focus and do not receive any mouse or keyboard input. Instead, they are
intended to act as general-purpose containers for other controls (including, possibly, other control boxes), in order to
build up a control hierarchy. In doing so, control boxes support three styles which are worthy of special mention
here:

® Because it is often desirable to be able to group controls together for convenience, but not desirable that the user
actually sees the container itself, control boxes can be marked with the style 'transparent’. In this case, no parts
of the control box are drawn, and any underlying colors and controls show through.

® Control boxes can also be marked with the style 'exclusive’. When an exclusive control box is made visible,
either in the dialog editor or at runtime, all other sibling control boxes that are also marked as 'exclusive’ are
hidden. This applies to edit-time and runtime in a slightly different way. At runtime, setting the VISIBLE
attribute of an exclusive control box to TRUE hides all its exclusive siblings and sets their VISIBLE attribute to
FALSE. At edit-time, whenever an exclusive control box or one of its descendants is selected, the exclusive
control box becomes visible and all other exclusive siblings are hidden. However, in this latter case the
VISIBLE attribute of the controls concerned is unaffected. This implies that the exclusive control box that is
initially visible when the dialog is run is independent of the exclusive control box that was visible at the time
the dialog was last saved.

e Additionally, control boxes support the 'size to parent’ style. When a container control, or the dialog itself, is
resized, all child control boxes (if any) with this style set are resized to entirely fill the parent’s client area. The
same applies when this style is first set in the dialog editor. However, it is still possible to resize such control
boxes independently of their container.

Purpose of exclusive control boxes

Exclusive control boxes, as described above, are primarily intended for situations where it is necessary to manage
several overlapping "pages" of controls occupying the same region of a dialog. Without the auto-hiding feature
which exclusive control boxes provide, it would be very difficult indeed for a user to handle this situation in the
dialog editor, as many controls would be partially or completely overlapped by others. Of course, one could move
the control to the front of the control sequence during editing, but this would be highly inconvenient, and one would
have to remember to move the control back before continuing.

Using exclusive control boxes, editing a control in this situation is as simple as selecting it. For controls that are not
currently on display, the selection can be made via the combo box in the dialog editor’s status bar or by using the
<Tab> key to walk through the controls sequentially until the target control is reached. When a control that is a
descendant of an exclusive control box is selected, that exclusive control box is made visible (if not already so), and
the previously visible exclusive control box is hidden. These changes have no impact on the generated dialog source
code and the runtime state of the dialog.

Examples of use of exclusive control boxes

Although the design of control boxes was intended to keep them as general as possible, two possible situations where
overlapping control pages are desired (and hence where exclusive control boxes become extremely useful) are
worthy of special mention here:

® \Wizard dialogs.
® Tabbed dialogs ("Property sheets").

60 Copyright Software AG 2002

Event-Driven Programming Techniques Examples of use of exclusive control boxes

™ Exomplc of wizard dialog writicn in Malural M=l E

Choose Options

This is an example of a wizan page used for gathering input to
deterrring what needs to be done.

T Xour karme.
' Hacker
" Expert Usar
 Advarced User I Durnrny option 1
" Intermediate User ™ Durrrny option 2
" Eeginner ™ Durarny option 2

Mext = Cancel

Copyright Software AG 2002 61

Examples of use of exclusive control boxes

Within the rectangle highlighted in red, the so-called "wizard pages" are displayed. Within this area, we use a 2-level

Event-Driven Programming Technigues

hierarchy of control boxes in order to implement the required functionality:

H#CTLBOE 1

Tt atuspat et
H#COTLBOX-2 ECTLBOX-3 HCTLBOX n
Tratspatent Tratispar ert Transparent
Ex clusive Ex clusive Ezx chusiwe
Size toparert Size to patent Size to parent

Here, #CTLBOX-1 is used as the "master" control box, which makes resizing of the pages easier later, should this
become necessary. Because all child control boxes are marked with the style 'size to parent’, we can resize the
wizard page area simply by resizing #CTLBOX-1.

The child control boxes are used to implement the actual wizard pages. #CTLBOX-2 contains the controls used for
wizard page 1, #CTLBOX-3 contains the controls for wizard page 2, and so on.

62 Copyright Software AG 2002

Event-Driven Programming Techniques Creation of the wizard pages

Creation of the wizard pages

Creation of the wizard pages typically involves the following steps:

1.
2.
3.

Create the top-level ("master") control box as for any other control.

Via its attributes window, set the 'transparent’ style.

Create another control box within the first one. The new control box automatically becomes a child of the first
one, because control boxes are always containers.

. Via the attributes window for the child control box, set the 'transparent’, 'exclusive’ and 'size to parent styles’.

Because the 'size to parent’ style is set, the child control box expands to fill its container.

. Now you can start adding the controls onto the newly-created control box, which becomes wizard page 1.
. Adding a new wizard page is most easily achieved by selecting the child control box you wish to immediately

precede the new one, then using the clipboard copy and paste commands. Before doing the copy, Natural will
prompt you as to whether you want the child controls to be copied, too. Answer this question with 'No’.

. Because the newly added child control box also has the exclusive flag set, the previously displayed child control

box is hidden, and the new blank one is shown, ready for you to start adding a new set of controls as for the first
wizard page.

Switching between the wizard pages at edit-time

Switching between the pages at edit time can be most simply achieved by selecting the child control box for the
appropriate page, or one of the controls on it, from the combo box in the dialog editor’s status bar.

Creating the divider line

The divider line between the push buttons and the wizard pages can be implemented as a very thin group box (2
pixels high) with no caption. The still slightly visible sides of the group box at each end can be masked out by using
a transparent control box which comes after the group frame in the control sequence. Make sure the ’control
clipping’ style for the dialog is switched on for this technique to work.

Copyright Software AG 2002 63

Implementing the 'Back’ and 'Next’ push buttons Event-Driven Programming Techniques

Implementing the 'Back’ and 'Next’ push buttons

Firstly, define a local variable for the dialog to store the handle of the currently active page. E.qg.:

01 #ACTPAGE HANDLE OF CONTROLBOX ...

Secondly, set this variable to the handle of the first wizard page in the AFTER-OPEN event for the dialog:

#ACTPAGE := #CTLBOX-1.FIRST-CHILD ..

where #CTLBOX-1 is the handle of the top-level control box.
Now we are ready to implement the CLICK event code for the 'Next’ push button (#PB-NEXT). This could look

something like this:

IF #ACTPAGE.SUCCESSOR = NULL-HANDLE
CLOSE DIALOG *DIALOG-ID
ELSE
REPEAT
#ACTPAGE := #ACTPAGE.SUCCESSOR
WHILE #ACTPAGE.ENABLED = FALSE
END-REPEAT
#ACTPAGE.VISIBLE := TRUE
IF #ACTPAGE.SUCCESSOR = NULL-HANDLE
#PB-NEXT.STRING :='Finish’
#PB-BACK.ENABLED := FALSE
#PB-CANCEL.ENABLED := FALSE
ELSE
#PB-BACK.ENABLED := TRUE
END-IF
END-IF

Note that this logic does not be modified if further wizard pages are added later. Note also that any intermediate
wizard pages whose corresponding control box has been disabled are ignored. This allows certain wizard pages to be
skipped, based on previous input, by simply setting the relevant contr&ENo®RLED attribute to FALSE. When

the last page is reached, the text for the 'Next’ push button is changed to 'Finish’.

The CLICK event code for the 'Back’ push button (#PB-BACK) is very similar:

REPEAT
#ACTPAGE = #ACTPAGE.PREDECESSOR
WHILE #ACTPAGE.ENABLED = FALSE
END-REPEAT
IF #ACTPAGE.PREDECESSOR = NULL-HANDLH
#PB-BACK.ENABLED := FALSE
END-IF
#ACTPAGE.VISIBLE := TRUE

Note that the 'Back’ push button should be initially disabled in the dialog editor.

Clearing all controls on a wizard page

This can be conveniently achieved by selecting any (highest-level) control on the relevant page, then performing a
"Select All" from the "Edit" menu to additionally select all the controls siblings. The selected controls can then be

deleted as normal.

64 Copyright Software AG 2002

Event-Driven Programming Techniques Example 2 - a tabbed dialog

Example 2 - a tabbed dialog

A tabbed dialog (sometimes called a "property sheet") is very similar in concept to a wizard dialog. The only
substantial difference is that instead of navigating between the control "pages" via the 'Next’ and 'Back’ push
buttons, the user directly accesses the page he wants by clicking on the appropriate tab. The control page hierarchy
can be built up and handled in the dialog editor in the same way as in the wizard dialog example above. Several
ActiveX controls are available which provide the actual tabs.

It should be noted, however, that the switching between the pages (i.e., switching between the corresponding control
boxes) is not automatic. The Natural programmer must insert code for the ActiveX event raised by a tab switch, find
out which tab is selected, and setWHSIBLE attribute of the appropriate (exclusive) control box to TRUE. This

cannot be done implicitly by Natural because each ActiveX control can implement its functionality in any way it
chooses. There is no standard event raised for a tab switch and no standard method with standard parameters (or
standard property) for determining the currently active tab.

An example tabbed dialog, making use of the Microsoft "Tab Strip" ActiveX control (V4-NEST.NS3) is shipped as
part of the Natural example libraries.

Copyright Software AG 2002 65

Working with Error Events Event-Driven Programming Technigues

Working with Error Events

When a runtime error occurs while a dialog is active, the dialog receives an error event. You can specify
event-handler code to be executed whenever this error occurs. If no error event-handler code is specified, Natural
aborts with an error message and all dialogs will be closed.

You can continue normal dialog processing after error handling by specifying ESCAPE ROUTINE at the end of the
event-handler code.

The dialog editor generates an ON ERROR statement for the event handler. If, for example, you want to prevent the
end user from closing the entire application when trying to divide an integer by zero, and the parameter ZD is set to
ON, the error event-handler code might look like this:

COMPRESS ’'Natural error’ *ERROR 'occurred.’ INTO #DLGSWINDOW.STATUS-TEXT
ESCAPE ROUTINE

Working with a Group of Radio-Button Controls

radio-button controls are created just like push-button controls or toggle button controls; however, they are grouped
using the GROUP-ID attribute. If you define a number of radio-button controls as a group, only one button is
selected at any time. The GROUP-ID attribute provides this selection logic.

You group several radio-button controls by assigning them the same GROUP-ID value (group number) in their
attributes windows. If the end user clicks on a radio-button control, all other radio-button controls in the dialog with
the same GROUP-ID will be deselected. They will also be deselected if one radio-button control is selected by code
like the following:

Example:

1 #RB-1 HANDLE OF RADIOBUTTON

#RB-1.CHECKED := CHECKED /* Set the CHECKED attribute to value CHECKED

You also have to bear in mind that the end user should be able to use the keyboard for navigation inside a group of
radio-button controls: TAB selects the first radio-button control, and the arrow keys enable you to navigate within
the radio-button group. To ensure that Natural automatically allows for such navigation, the radio-button controls
must follow each other directly in the navigation sequence. If you are dynamically adding a radio-button control via
the PROCESS GUI statement action ADD, this can be achieved by specifying a value for the button’s FOLLOWS
attribute.

» To edit the navigation sequence

From the menu bar, select "Dialog > Control Sequence".

66 Copyright Software AG 2002

Event-Driven Programming Techniques Working with List-Box Controls and Selection-Box Controls

Working with List-Box Controls and Selection-Box Controls

list-box controls and selection box controls contain a number of items. Both the controls and the items are dialog
elements; the controls are the parents of the items.

There are two ways of creating list-box items and sebox items:

® Use Natural code to create individual and multiple list-box items dynamically; or
® use the dialog editor (to add single or arrays of list-box items and sebox items).

In Natural code, this may look like this:

Example:

#AMOUNT := 5

ITEM (1) := 'BERLIN’

ITEM (2) := 'PARIS’

ITEM (3) :='LONDON’

ITEM (4) := 'MILAN’

ITEM (5) := 'MADRID’

PROCESS GUI ACTION ADD-ITEMS WITH #LB-1 #AMOUNT #ITEM (1:5) GIVING #RESPONSE

You first specify the number of items you want to create, name the items, and use the PROCESS GUI statement
action ADD-ITEMS.

If you want to go through all items of a list-box control to find out which ones are selected, it is advisable to use the
SELECTED-SUCCESSOR attribute because if a list-box control contains a large number of items (100, for
example), this helps improve performance. If you use SELECTED-SUCCESSOR, you have one query instead of 100
individual queries if you use the attributes SELECTED and SUCCESSOR.

Example:

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE

...* STRING display logic

MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM
END-REPEAT

For performance reasons, you should not use the SELECTED-SUCCESSOR attribute to refer to the same dialog
element handle twice, because Natural goes through the list of item handles twice:

Example:

/* Displays the STRING attribute of every SELECTED list-box item,
/* but may be slow
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE
IF #LBITEM.SELECTED-SUCCESSOR = NULL-HANDLE /* Searches in the list of items
IGNORE
END-IF
...I* STRING display logic
MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM /* Searches in the list of items
END-REPEAT /* for the second time

Copyright Software AG 2002 67

Working with List-Box Controls and Selection-Box Controls Event-Driven Programming Technigues

To avoid this problem, you use a second variable "#OLDITEM" besides "#LBITEM":

Example:

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE
#OLDITEM = #LBITEM
#LBITEM = #LBITEM.SELECTED-SUCCESSOR/* Searches in the list of items (once)
IF #LBITEM = NULL-HANDLE
IGNORE
END-IF
...I* Display logic using #OLDITEM.STRING
END-REPEAT

If you retrieve the handle values of the selected items, a value other than NULL-HANDLE would normally be
returned by selected items. Such a handle value can also be returned by non-selected items if you assign
SELECTED-SUCCESSOR a value immediately before retrieving the SELECTED-SUCCESSOR value of a
non-selected item, as shown in the following example:

Example:

PTR := #LB-1.SELECTED-SUCCESSOR
PTR := NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR
IF NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR = NULL-HANDLE THEN
#DLG$WINDOW.STATUS-TEXT := 'NULL-HANDLE’
ELSE
COMPRESS 'NEXT SELECTION: ' PTR.STRING TO #DLG$WINDOW.STATUS-TEXT
END-IF

If you want to query whether a particular item in a list-box control is selected, you get the best performance by using
the SELECTED attribute:

Example:

#DLG$WINDOW.STRING:= #LB-1-ITEMS.SELECTED(3)

» Protecting Selection-Box Controls and Input-Field Controls

To prevent an end user from typing in input data in a sebox control or input-field control, you have several
possiblities, for example:

® setting the MODIFIABLE attribute to FALSE for the dialog element, or
® setting session parameter AD=P, or
® using a control variable (CV).

If a sebox control is protected, it is still possible to select items; only values from the item list will be displayed in its
input field. If the STRING attribute is set to a value (dynamically or by initialisation) which is not in the item list, the
value will not be visible to the end user.

68 Copyright Software AG 2002

Event-Driven Programming Techniques Working with Nested Controls

Working with Nested Controls

It is possible to create controls as children of other controls in addition to so-called "top-level" controls, which are
direct children of the dialog. Such controls are referred to as nested controls. The parent control is referred to as the
container. We will also use the term siblings to refer to a set of child controls which all have the same parent.
Clearly, there can be many different sets of sibling controls within a control hierarchy.

Creation of a control hierarchy enables the Natural programmer to group together controls such that they can be
manipulated more easily and more efficiently within a Natural program. The following list describes the
characteristics of nested controls:

® Their position is relative to the client area of the container control instead of relative to the dialog.

® Their display is clipped to their respective ancestor windows. This means that the areas of the nested control
that are outside the boundary of its container are not visible. The dialog editor does not allow dragging of nested
controls outside of the container.

e Nested controls are always displayed in front of their container control, regardless of their position in the
control sequence.

® Nested controls are moved with their container control. This applies at both edit-time in the dialog editor (when
the container is dragged) and at runtime (when the contaRECTANGLE-X and/orRECTANGLE-Y
attributes are modified).

® Nested controls are hidden when the container control is hidden, even thoMgBIBIeE attribute of the
nested control remains unchanged.

® Nested controls are disabled at runtime when the container control is disabled, even thEhkBhED
attribute of the nested control remains unchanged and even though the control does not become grayed.

® Nested controls are deleted when the container control is deleted.

Note:

Natural does not impose any arbitrary limits on the number of levels that a control hierarchy may contain. The level
number for a particular control is displayed together with the control’'s name in the dialog editor status bar combo
box.

Which control types can be containers?

Not all control types are capable of acting as a container. It is not possible to create a control as a child of an input
field, for example. There are currently three types of container control supported by Natural:

e Group frames that have the (new) 'container’ style set. This can be changed in the dialog editor (via its
attributes window) after the group frame has been created. If a group frame is converted to a container, all
controls that are spatially contained within it are moved in the control hierarchy to become descendants of the
group frame. If a group frame is converted to a non-container, all direct children of the group frame are moved
up a level in the hierarchy to become siblings of the group frame.

® ActiveX controls which are marked as "OLEMISC_SIMPLEFRAME" in the registry. This flag is fixed by
design for a particular ActiveX control class.

® Control boxes. This control type is always a control container. Indeed, that is its entire purpose in life. See the
section"Working with Control Boxesfor more information.

Copyright Software AG 2002 69

Creating a nested control Event-Driven Programming Technigues

Creating a nested control

Nested controls are created in the dialog editor in the same way as non-nested controls are. If, during control
insertion, the initial left mouse button click is determined to be over a container control, the new control is created
automatically by Natural as a child of that container. Even before the mouse button is clicked in insert mode, the
dialog editor’s status bar is continually updated with the container-relative mouse co-ordinates as the mouse cursor
traverses the dialog.

In addition, nested controls can be indirectly created within the dialog editor when converting group frames to
containers as described above.

At runtime, nested controls can be created dynamically, via the PROCESS GUI ACTION ADD statement for the
nested control, by specifying tRRARENT attribute as the handle of the required container control instead of the

handle of the dialog. The nested control’'s positRECTANGLE-X andRECTANGLE-Y attributes) should be

specified relative to the container’s client area. The client area of a control is the internal area of a control, excluding
frame components such as 3-D borders, single-pixel frames resulting from used of the 'Framed’ style, and a control's
scroll bars.

Multiple selection, control sequence and clipboard operations

The dialog editor prohibits selection of multiple controls which do not have the same parent (i.e., are not all siblings
of each other). This applies regardless of whether multiple controls are selected via "rubber banding" (marking of a
region with the left mouse button held down) or via extended selection (holding down the <Shift> key whilst
selecting a control). However, if a selected container control is deleted, then all its direct and indirect children
(descendanjsare of course implicitly deleted also, even though they are not explicitly selected. For this reason, a
clipboard cut operation always copies the selected control(s) AND all descendant controls (if any) to the clipboard.
For a clipboard copy operation, it is not clear whether to copy the container alone, or the container plus all its
descendants. In this case, a message box is displayed, allowing the user to choose between the two options.

The pasting of controls from the clipboard uses the same control sequence (tab order) insertion position logic as for a
control created from scratch. In both cases, the new control is created at a position in the control sequence
immediately following the selected sibling (if any) plus any of its successive descendants. If a control other than a
sibling is selected, an "effective sibling" is used instead, based on the position of the (active) selected control in the
control sequence. The "active" selected control is the selected control (if any) which is highlighted using black

(rather than gray) selection handles. If no selection is active, the control is inserted into the control sequence
immediately preceding the first sibling control, or immediately after its container (or at the front of the control
sequence for top-level controls) if the container is empty. Note, however, that the control sequence is maintained
independently of the hierarchy. After a control has been created, it is possible to explicitly move any control to any
position in the control sequence via the Control Sequence option on the Dialog menu.

The position of the newly-created control in the hierarchy is determined slightly differently in these two cases. In the
case of a control being created from scratch, the container is determined by searching for the (topmost) container at
the position where the left mouse button was pressed. However, in the case of pasting from the clipboard, we have
no (X, Y)-position which we can use. In this case, the container is assumed to be the container of the selected
control(s), or the dialog itself if no controls are selected. This means that if, for example, it is desired to copy and
paste a control from one container to another, a control within the second container must be selected prior to the
paste, not the container itself. If the second container is empty, this requires temporary creation of a dummy child
control first, which can be deleted after the paste operation is complete.

Deletion of contr